Almost split sequences for non-regular modules
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 183-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be an Artin algebra and let $0 → X → ⊕_{i = 1}^rY_i → Z → 0$ be an almost split sequence of A-modules with the $Y_i$ indecomposable. Suppose that X has a projective predecessor and Z has an injective successor in the Auslander-Reiten quiver $Γ_A$ of A. Then r ≤ 4, and r = 4 implies that one of the $Y_i$ is projective-injective. Moreover, if $X → ⊕_{j = 1}^tY_j$ is a source map with the $Y_j$ indecomposable and X on an oriented cycle in $Γ_A$, then t ≤ 4 and at most three of the $Y_j$ are not projective. The dual statement for a sink map holds. Finally, if an arrow X → Y in $Γ_A$ with valuation (d,d') is on an oriented cycle, then dd' ≤ 3.
DOI : 10.4064/fm-143-2-183-190

S. Liu 1

1
@article{10_4064_fm_143_2_183_190,
     author = {S. Liu},
     title = {Almost split sequences for non-regular modules},
     journal = {Fundamenta Mathematicae},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {1993},
     doi = {10.4064/fm-143-2-183-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-183-190/}
}
TY  - JOUR
AU  - S. Liu
TI  - Almost split sequences for non-regular modules
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 183
EP  - 190
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-183-190/
DO  - 10.4064/fm-143-2-183-190
LA  - en
ID  - 10_4064_fm_143_2_183_190
ER  - 
%0 Journal Article
%A S. Liu
%T Almost split sequences for non-regular modules
%J Fundamenta Mathematicae
%D 1993
%P 183-190
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-183-190/
%R 10.4064/fm-143-2-183-190
%G en
%F 10_4064_fm_143_2_183_190
S. Liu. Almost split sequences for non-regular modules. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 183-190. doi : 10.4064/fm-143-2-183-190. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-183-190/

Cité par Sources :