When are Borel functions Baire functions?
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following two theorems give the flavour of what will be proved. Theorem. Let Y be a complete metric space. Then the families of first Baire class functions and of first Borel class functions from [0,1] to Y coincide if and only if Y is connected and locally connected.} Theorem. Let Y be a separable metric space. Then the families of second Baire class functions and of second Borel class functions from [0,1] to Y coincide if and only if for all finite sequences $U_1,...,U_q$ of nonempty open subsets of Y there exists a continuous function ϕ:[0,1] → Y such that $ ϕ^{-1}(U_i) ≠Ø$ for all i ≤ q.
DOI : 10.4064/fm-143-2-137-152

M. Fosgerau 1

1
@article{10_4064_fm_143_2_137_152,
     author = {M. Fosgerau},
     title = {When are {Borel} functions {Baire} functions?},
     journal = {Fundamenta Mathematicae},
     pages = {137--152},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {1993},
     doi = {10.4064/fm-143-2-137-152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/}
}
TY  - JOUR
AU  - M. Fosgerau
TI  - When are Borel functions Baire functions?
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 137
EP  - 152
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/
DO  - 10.4064/fm-143-2-137-152
LA  - en
ID  - 10_4064_fm_143_2_137_152
ER  - 
%0 Journal Article
%A M. Fosgerau
%T When are Borel functions Baire functions?
%J Fundamenta Mathematicae
%D 1993
%P 137-152
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/
%R 10.4064/fm-143-2-137-152
%G en
%F 10_4064_fm_143_2_137_152
M. Fosgerau. When are Borel functions Baire functions?. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152. doi : 10.4064/fm-143-2-137-152. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/

Cité par Sources :