When are Borel functions Baire functions?
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The following two theorems give the flavour of what will be proved. Theorem. Let Y be a complete metric space. Then the families of first Baire class functions and of first Borel class functions from [0,1] to Y coincide if and only if Y is connected and locally connected.} Theorem. Let Y be a separable metric space. Then the families of second Baire class functions and of second Borel class functions from [0,1] to Y coincide if and only if for all finite sequences $U_1,...,U_q$ of nonempty open subsets of Y there exists a continuous function ϕ:[0,1] → Y such that $ ϕ^{-1}(U_i) ≠Ø$ for all i ≤ q.
@article{10_4064_fm_143_2_137_152,
author = {M. Fosgerau},
title = {When are {Borel} functions {Baire} functions?},
journal = {Fundamenta Mathematicae},
pages = {137--152},
year = {1993},
volume = {143},
number = {2},
doi = {10.4064/fm-143-2-137-152},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/}
}
M. Fosgerau. When are Borel functions Baire functions?. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152. doi: 10.4064/fm-143-2-137-152
Cité par Sources :