When are Borel functions Baire functions?
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The following two theorems give the flavour of what will be proved. Theorem. Let Y be a complete metric space. Then the families of first Baire class functions and of first Borel class functions from [0,1] to Y coincide if and only if Y is connected and locally connected.} Theorem. Let Y be a separable metric space. Then the families of second Baire class functions and of second Borel class functions from [0,1] to Y coincide if and only if for all finite sequences $U_1,...,U_q$ of nonempty open subsets of Y there exists a continuous function ϕ:[0,1] → Y such that $ ϕ^{-1}(U_i) ≠Ø$ for all i ≤ q.
@article{10_4064_fm_143_2_137_152,
author = {M. Fosgerau},
title = {When are {Borel} functions {Baire} functions?},
journal = {Fundamenta Mathematicae},
pages = {137--152},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {1993},
doi = {10.4064/fm-143-2-137-152},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-137-152/}
}
M. Fosgerau. When are Borel functions Baire functions?. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 137-152. doi: 10.4064/fm-143-2-137-152
Cité par Sources :