On linear operators and functors extending pseudometrics
Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 101-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For some pairs (X,A), where X is a metrizable topological space and A its closed subset, continuous, linear (i.e., additive and positive-homogeneous) operators extending metrics for A to metrics for X are constructed. They are defined by explicit analytic formulas, and also regarded as functors between certain categories. An essential role is played by "squeezed cones" related to the classical cone construction. The main result: if A is a nondegenerate absolute neighborhood retract for metric spaces, then continuous linear operators extending metrics always exist.
@article{10_4064_fm_142_2_101_122,
author = {C. Bessaga},
title = {On linear operators and functors extending pseudometrics},
journal = {Fundamenta Mathematicae},
pages = {101--122},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {1993},
doi = {10.4064/fm-142-2-101-122},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-101-122/}
}
TY - JOUR AU - C. Bessaga TI - On linear operators and functors extending pseudometrics JO - Fundamenta Mathematicae PY - 1993 SP - 101 EP - 122 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-101-122/ DO - 10.4064/fm-142-2-101-122 LA - en ID - 10_4064_fm_142_2_101_122 ER -
C. Bessaga. On linear operators and functors extending pseudometrics. Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 101-122. doi: 10.4064/fm-142-2-101-122
Cité par Sources :