Some complexity results in topology and analysis
Fundamenta Mathematicae, Tome 141 (1992) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If X is a compact metric space of dimension n, then K(X), the n- dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Aleksandrov raised the problem of what the descriptive complexity of K(X) could be. A straightforward analysis shows that if X is an n-dimensional complete separable metric space, then K(X) is a $Σ_2^1$ or PCA set. We show (a) there is an n-dimensional continuum X in $ℝ^n+1$ for which K(X) is a complete $Π_1^1$ set. In particular, $K(X) ∈ Π_1^1-Σ_1^1$; K(X) is coanalytic but is not an analytic set and (b) there is an n-dimensional continuum X in $ℝ^n+2$ for which K(X) is a complete $Σ_2^1$ set. In particular, $K(X) ∈ Σ_2^1-Π_2^1$; K(X) is PCA, but not CPCA. It is also shown the Lebesgue measure as a function on the closed subsets of [0,1] is an explicit example of an upper semicontinuous function which is not countably continuous.
DOI : 10.4064/fm-141-1-75-83
Keywords: cantor manifold, dimensional kernel, projective set, countably continuous, upper semicontinuous

Steve Jackson 1 ; R. Mauldin 1

1
@article{10_4064_fm_141_1_75_83,
     author = {Steve Jackson and R. Mauldin},
     title = {Some complexity results in topology and analysis},
     journal = {Fundamenta Mathematicae},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {1992},
     doi = {10.4064/fm-141-1-75-83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-75-83/}
}
TY  - JOUR
AU  - Steve Jackson
AU  - R. Mauldin
TI  - Some complexity results in topology and analysis
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 75
EP  - 83
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-75-83/
DO  - 10.4064/fm-141-1-75-83
LA  - en
ID  - 10_4064_fm_141_1_75_83
ER  - 
%0 Journal Article
%A Steve Jackson
%A R. Mauldin
%T Some complexity results in topology and analysis
%J Fundamenta Mathematicae
%D 1992
%P 75-83
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-75-83/
%R 10.4064/fm-141-1-75-83
%G en
%F 10_4064_fm_141_1_75_83
Steve Jackson; R. Mauldin. Some complexity results in topology and analysis. Fundamenta Mathematicae, Tome 141 (1992) no. 1, pp. 75-83. doi : 10.4064/fm-141-1-75-83. http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-75-83/

Cité par Sources :