A concavity property for the measure of product sets in groups
Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 247-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf {μ̅(AB): μ(A) = x} is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman's inequality $μ̲(AB) ≥ min (μ̲(A) + μ̲(B), μ(G))$ for unimodular G.
DOI : 10.4064/fm-140-3-247-254

Imre Ruzsa 1

1
@article{10_4064_fm_140_3_247_254,
     author = {Imre Ruzsa},
     title = {A concavity property for the measure of product sets in groups},
     journal = {Fundamenta Mathematicae},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {1991},
     doi = {10.4064/fm-140-3-247-254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/}
}
TY  - JOUR
AU  - Imre Ruzsa
TI  - A concavity property for the measure of product sets in groups
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 247
EP  - 254
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/
DO  - 10.4064/fm-140-3-247-254
LA  - en
ID  - 10_4064_fm_140_3_247_254
ER  - 
%0 Journal Article
%A Imre Ruzsa
%T A concavity property for the measure of product sets in groups
%J Fundamenta Mathematicae
%D 1991
%P 247-254
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/
%R 10.4064/fm-140-3-247-254
%G en
%F 10_4064_fm_140_3_247_254
Imre Ruzsa. A concavity property for the measure of product sets in groups. Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 247-254. doi : 10.4064/fm-140-3-247-254. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/

Cité par Sources :