A concavity property for the measure of product sets in groups
Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 247-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf {μ̅(AB): μ(A) = x} is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman's inequality $μ̲(AB) ≥ min (μ̲(A) + μ̲(B), μ(G))$ for unimodular G.
@article{10_4064_fm_140_3_247_254,
author = {Imre Ruzsa},
title = {A concavity property for the measure of product sets in groups},
journal = {Fundamenta Mathematicae},
pages = {247--254},
publisher = {mathdoc},
volume = {140},
number = {3},
year = {1991},
doi = {10.4064/fm-140-3-247-254},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/}
}
TY - JOUR AU - Imre Ruzsa TI - A concavity property for the measure of product sets in groups JO - Fundamenta Mathematicae PY - 1991 SP - 247 EP - 254 VL - 140 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-247-254/ DO - 10.4064/fm-140-3-247-254 LA - en ID - 10_4064_fm_140_3_247_254 ER -
Imre Ruzsa. A concavity property for the measure of product sets in groups. Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 247-254. doi: 10.4064/fm-140-3-247-254
Cité par Sources :