The semi-index product formula
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 99-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula    |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| $(f_b,g_b:p^{-1}(b) ∩ A)$ to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and $N(f_b,g_b)$.
DOI : 10.4064/fm-140-2-99-120

Jerzy Jezierski 1

1
@article{10_4064_fm_140_2_99_120,
     author = {Jerzy Jezierski},
     title = {The semi-index product formula},
     journal = {Fundamenta Mathematicae},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {1991},
     doi = {10.4064/fm-140-2-99-120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-99-120/}
}
TY  - JOUR
AU  - Jerzy Jezierski
TI  - The semi-index product formula
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 99
EP  - 120
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-99-120/
DO  - 10.4064/fm-140-2-99-120
LA  - en
ID  - 10_4064_fm_140_2_99_120
ER  - 
%0 Journal Article
%A Jerzy Jezierski
%T The semi-index product formula
%J Fundamenta Mathematicae
%D 1991
%P 99-120
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-99-120/
%R 10.4064/fm-140-2-99-120
%G en
%F 10_4064_fm_140_2_99_120
Jerzy Jezierski. The semi-index product formula. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 99-120. doi : 10.4064/fm-140-2-99-120. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-99-120/

Cité par Sources :