The semi-index product formula
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 99-120
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| $(f_b,g_b:p^{-1}(b) ∩ A)$ to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and $N(f_b,g_b)$.
@article{10_4064_fm_140_2_99_120,
author = {Jerzy Jezierski},
title = {The semi-index product formula},
journal = {Fundamenta Mathematicae},
pages = {99--120},
year = {1991},
volume = {140},
number = {2},
doi = {10.4064/fm-140-2-99-120},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-99-120/}
}
Jerzy Jezierski. The semi-index product formula. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 99-120. doi: 10.4064/fm-140-2-99-120
Cité par Sources :