Relatively recursive expansions
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 137-155.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper, we consider the following basic question. Let A be an L-structure and let ψ be an infinitary sentence in the language L∪{R}, where R is a new relation symbol. When is it the case that for every B ≅ A, there is a relation R such that (B,R) ⊨ ψ and $R ≤_T D(B)$? We succeed in giving necessary and sufficient conditions in the case where ψ is a "recursive" infinitary $Π_2$ sentence. (A recursive infinitary formula is an infinitary formula with recursive disjunctions and conjunctions.) We consider also some variants of the basic question, in which R is r.e., $Δ_α^0$, or $Σ_α$ instead of recursive relative to D(B).
DOI : 10.4064/fm-140-2-137-155

C. Ash 1 ; J. Knight 1

1
@article{10_4064_fm_140_2_137_155,
     author = {C. Ash and J. Knight},
     title = {Relatively recursive expansions},
     journal = {Fundamenta Mathematicae},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {1991},
     doi = {10.4064/fm-140-2-137-155},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-137-155/}
}
TY  - JOUR
AU  - C. Ash
AU  - J. Knight
TI  - Relatively recursive expansions
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 137
EP  - 155
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-137-155/
DO  - 10.4064/fm-140-2-137-155
LA  - en
ID  - 10_4064_fm_140_2_137_155
ER  - 
%0 Journal Article
%A C. Ash
%A J. Knight
%T Relatively recursive expansions
%J Fundamenta Mathematicae
%D 1991
%P 137-155
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-137-155/
%R 10.4064/fm-140-2-137-155
%G en
%F 10_4064_fm_140_2_137_155
C. Ash; J. Knight. Relatively recursive expansions. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 137-155. doi : 10.4064/fm-140-2-137-155. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-137-155/

Cité par Sources :