The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters
Fundamenta Mathematicae, Tome 117 (1983) no. 2, pp. 91-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-117-2-91-93

Robert Mignone 1

1
@article{10_4064_fm_117_2_91_93,
     author = {Robert Mignone},
     title = {The axiom of determinateness implies $\ensuremath{\omega}_2$ has precisely two countably complete, uniform, weakly normal ultrafilters},
     journal = {Fundamenta Mathematicae},
     pages = {91--93},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {1983},
     doi = {10.4064/fm-117-2-91-93},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/}
}
TY  - JOUR
AU  - Robert Mignone
TI  - The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters
JO  - Fundamenta Mathematicae
PY  - 1983
SP  - 91
EP  - 93
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/
DO  - 10.4064/fm-117-2-91-93
LA  - en
ID  - 10_4064_fm_117_2_91_93
ER  - 
%0 Journal Article
%A Robert Mignone
%T The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters
%J Fundamenta Mathematicae
%D 1983
%P 91-93
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/
%R 10.4064/fm-117-2-91-93
%G en
%F 10_4064_fm_117_2_91_93
Robert Mignone. The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters. Fundamenta Mathematicae, Tome 117 (1983) no. 2, pp. 91-93. doi : 10.4064/fm-117-2-91-93. http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/

Cité par Sources :