The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters
Fundamenta Mathematicae, Tome 117 (1983) no. 2, pp. 91-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_117_2_91_93,
author = {Robert Mignone},
title = {The axiom of determinateness implies $\ensuremath{\omega}_2$ has precisely two countably complete, uniform, weakly normal ultrafilters},
journal = {Fundamenta Mathematicae},
pages = {91--93},
publisher = {mathdoc},
volume = {117},
number = {2},
year = {1983},
doi = {10.4064/fm-117-2-91-93},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/}
}
TY - JOUR AU - Robert Mignone TI - The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters JO - Fundamenta Mathematicae PY - 1983 SP - 91 EP - 93 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/ DO - 10.4064/fm-117-2-91-93 LA - en ID - 10_4064_fm_117_2_91_93 ER -
%0 Journal Article %A Robert Mignone %T The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters %J Fundamenta Mathematicae %D 1983 %P 91-93 %V 117 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-117-2-91-93/ %R 10.4064/fm-117-2-91-93 %G en %F 10_4064_fm_117_2_91_93
Robert Mignone. The axiom of determinateness implies $ω_2$ has precisely two countably complete, uniform, weakly normal ultrafilters. Fundamenta Mathematicae, Tome 117 (1983) no. 2, pp. 91-93. doi: 10.4064/fm-117-2-91-93
Cité par Sources :