$L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 99-112.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-107-2-99-112

Charles Landraitis 1

1
@article{10_4064_fm_107_2_99_112,
     author = {Charles Landraitis},
     title = {$L_{{\ensuremath{\omega}_1}\ensuremath{\omega}}$ equivalence between countable and uncountable linear orderings},
     journal = {Fundamenta Mathematicae},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {1980},
     doi = {10.4064/fm-107-2-99-112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/}
}
TY  - JOUR
AU  - Charles Landraitis
TI  - $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
JO  - Fundamenta Mathematicae
PY  - 1980
SP  - 99
EP  - 112
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/
DO  - 10.4064/fm-107-2-99-112
LA  - en
ID  - 10_4064_fm_107_2_99_112
ER  - 
%0 Journal Article
%A Charles Landraitis
%T $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
%J Fundamenta Mathematicae
%D 1980
%P 99-112
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/
%R 10.4064/fm-107-2-99-112
%G en
%F 10_4064_fm_107_2_99_112
Charles Landraitis. $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings. Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 99-112. doi : 10.4064/fm-107-2-99-112. http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/

Cité par Sources :