$L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 99-112
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_107_2_99_112,
author = {Charles Landraitis},
title = {$L_{{\ensuremath{\omega}_1}\ensuremath{\omega}}$ equivalence between countable and uncountable linear orderings},
journal = {Fundamenta Mathematicae},
pages = {99--112},
year = {1980},
volume = {107},
number = {2},
doi = {10.4064/fm-107-2-99-112},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/}
}
TY - JOUR
AU - Charles Landraitis
TI - $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
JO - Fundamenta Mathematicae
PY - 1980
SP - 99
EP - 112
VL - 107
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/
DO - 10.4064/fm-107-2-99-112
LA - en
ID - 10_4064_fm_107_2_99_112
ER -
%0 Journal Article
%A Charles Landraitis
%T $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings
%J Fundamenta Mathematicae
%D 1980
%P 99-112
%V 107
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/
%R 10.4064/fm-107-2-99-112
%G en
%F 10_4064_fm_107_2_99_112
Charles Landraitis. $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings. Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 99-112. doi: 10.4064/fm-107-2-99-112
Cité par Sources :