Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_107_2_99_112, author = {Charles Landraitis}, title = {$L_{{\ensuremath{\omega}_1}\ensuremath{\omega}}$ equivalence between countable and uncountable linear orderings}, journal = {Fundamenta Mathematicae}, pages = {99--112}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {1980}, doi = {10.4064/fm-107-2-99-112}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/} }
TY - JOUR AU - Charles Landraitis TI - $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings JO - Fundamenta Mathematicae PY - 1980 SP - 99 EP - 112 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/ DO - 10.4064/fm-107-2-99-112 LA - en ID - 10_4064_fm_107_2_99_112 ER -
%0 Journal Article %A Charles Landraitis %T $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings %J Fundamenta Mathematicae %D 1980 %P 99-112 %V 107 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/ %R 10.4064/fm-107-2-99-112 %G en %F 10_4064_fm_107_2_99_112
Charles Landraitis. $L_{{ω_1}ω}$ equivalence between countable and uncountable linear orderings. Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 99-112. doi : 10.4064/fm-107-2-99-112. http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-99-112/
Cité par Sources :