Metric projections of closed subspaces of $c_0$
onto subspaces of finite codimension
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 231-252
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a closed subspace of $c_0$. We show that the metric projection onto any proximinal subspace of finite codimension in $X$ is Hausdorff metric continuous, which, in particular, implies that it is both lower and upper Hausdorff semicontinuous.
Keywords:
closed subspace metric projection proximinal subspace finite codimension hausdorff metric continuous which particular implies lower upper hausdorff semicontinuous
Affiliations des auteurs :
V. Indumathi 1
@article{10_4064_cm99_2_8,
author = {V. Indumathi},
title = {Metric projections of closed subspaces of $c_0$
onto subspaces of finite codimension},
journal = {Colloquium Mathematicum},
pages = {231--252},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/}
}
TY - JOUR AU - V. Indumathi TI - Metric projections of closed subspaces of $c_0$ onto subspaces of finite codimension JO - Colloquium Mathematicum PY - 2004 SP - 231 EP - 252 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/ DO - 10.4064/cm99-2-8 LA - en ID - 10_4064_cm99_2_8 ER -
V. Indumathi. Metric projections of closed subspaces of $c_0$ onto subspaces of finite codimension. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 231-252. doi: 10.4064/cm99-2-8
Cité par Sources :