Metric projections of closed subspaces of $c_0$ onto subspaces of finite codimension
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 231-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a closed subspace of $c_0$. We show that the metric projection onto any proximinal subspace of finite codimension in $X$ is Hausdorff metric continuous, which, in particular, implies that it is both lower and upper Hausdorff semicontinuous.
DOI : 10.4064/cm99-2-8
Keywords: closed subspace metric projection proximinal subspace finite codimension hausdorff metric continuous which particular implies lower upper hausdorff semicontinuous

V. Indumathi 1

1 Department of Mathematics Pondicherry University, Kalapet Pondicherry-605014, India
@article{10_4064_cm99_2_8,
     author = {V. Indumathi},
     title = {Metric projections of closed subspaces of $c_0$
 onto subspaces of finite codimension},
     journal = {Colloquium Mathematicum},
     pages = {231--252},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2004},
     doi = {10.4064/cm99-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/}
}
TY  - JOUR
AU  - V. Indumathi
TI  - Metric projections of closed subspaces of $c_0$
 onto subspaces of finite codimension
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 231
EP  - 252
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/
DO  - 10.4064/cm99-2-8
LA  - en
ID  - 10_4064_cm99_2_8
ER  - 
%0 Journal Article
%A V. Indumathi
%T Metric projections of closed subspaces of $c_0$
 onto subspaces of finite codimension
%J Colloquium Mathematicum
%D 2004
%P 231-252
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/
%R 10.4064/cm99-2-8
%G en
%F 10_4064_cm99_2_8
V. Indumathi. Metric projections of closed subspaces of $c_0$
 onto subspaces of finite codimension. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 231-252. doi : 10.4064/cm99-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-8/

Cité par Sources :