Finite presentation and purity in categories $\sigma [M]$
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 189-202
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any module $M$ over an associative ring $R$, let $ \sigma [M] $ denote the smallest Grothendieck subcategory of
${\rm Mod}\hbox {-}R$ containing $M$. If $ \sigma [M]$ is locally finitely presented the notions of purity and pure injectivity are defined in $ \sigma [M]$. In this paper the relationship between these notions and the corresponding notions defined in
${\rm Mod}\hbox {-}R$ is investigated, and the connection between the resulting Ziegler spectra is discussed. An example is given of an $M$ such that $ \sigma [M]$ does not contain any non-zero finitely presented objects.
Keywords:
module associative ring sigma denote smallest grothendieck subcategory mod hbox containing sigma locally finitely presented notions purity pure injectivity defined sigma paper relationship between these notions corresponding notions defined mod hbox investigated connection between resulting ziegler spectra discussed example given sigma does contain non zero finitely presented objects
Affiliations des auteurs :
Mike Prest 1 ; Robert Wisbauer 2
@article{10_4064_cm99_2_4,
author = {Mike Prest and Robert Wisbauer},
title = {Finite presentation and purity in categories $\sigma [M]$},
journal = {Colloquium Mathematicum},
pages = {189--202},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-4/}
}
TY - JOUR AU - Mike Prest AU - Robert Wisbauer TI - Finite presentation and purity in categories $\sigma [M]$ JO - Colloquium Mathematicum PY - 2004 SP - 189 EP - 202 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-4/ DO - 10.4064/cm99-2-4 LA - en ID - 10_4064_cm99_2_4 ER -
Mike Prest; Robert Wisbauer. Finite presentation and purity in categories $\sigma [M]$. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 189-202. doi: 10.4064/cm99-2-4
Cité par Sources :