Sur une application de la formule de Selberg–Delange
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 223-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

E. Landau has given an asymptotic estimate for the number of integers up to $x$ whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg–Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if $\omega(m)$ (resp. ${\mit\Omega}(m)$) denotes the number of prime factors of $m$ without multiplicity (resp. with multiplicity), we give an asymptotic estimate as $x\to \infty$ of the number of integers $m$ satisfying $2^{\omega(m)}m\le x$, all prime factors of $m$ are congruent to $3$, $5$ or $6$ modulo $7$, ${\mit\Omega}(m)\equiv i \pmod{2}$ (where $i=0$ or $1$), and $m\equiv l \pmod{b}$.The above quantity has appeared in the paper \cite{BNSL} to estimate the number of elements up to $x$ of the set $\cal A$ of positive integers containing $1$, $2$ and $3$ and such that the number $p({\cal A},n)$ of partitions of $n$ with parts in $\cal A$ is even, for all $n\ge 4$.
DOI : 10.4064/cm98-2-8
Mots-clés : landau has given asymptotic estimate number integers whose prime factors belong arithmetic progressions paper using selberg delange formula evaluate number elements somewhat complicated sets instance omega resp mit omega denotes number prime factors without multiplicity resp multiplicity asymptotic estimate infty number integers satisfying omega prime factors congruent modulo mit omega equiv pmod where equiv pmod above quantity has appeared paper cite bnsl estimate number elements set cal positive integers containing number cal partitions parts cal even

F. Ben Saïd 1 ; J.-L. Nicolas 2

1 Faculté des Sciences de Monastir Avenue de l'environnement 5000, Monastir, Tunisie
2 Institut Girard Desargues, UMR 5028 Bât. Doyen Jean Braconnier Université Claude Bernard (Lyon 1) 21 Avenue Claude Bernard F-69622 Villeurbanne Cedex, France
@article{10_4064_cm98_2_8,
     author = {F. Ben Sa{\"\i}d and J.-L. Nicolas},
     title = {Sur une application de la formule de {Selberg{\textendash}Delange}},
     journal = {Colloquium Mathematicum},
     pages = {223--247},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-8},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-8/}
}
TY  - JOUR
AU  - F. Ben Saïd
AU  - J.-L. Nicolas
TI  - Sur une application de la formule de Selberg–Delange
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 223
EP  - 247
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-8/
DO  - 10.4064/cm98-2-8
LA  - fr
ID  - 10_4064_cm98_2_8
ER  - 
%0 Journal Article
%A F. Ben Saïd
%A J.-L. Nicolas
%T Sur une application de la formule de Selberg–Delange
%J Colloquium Mathematicum
%D 2003
%P 223-247
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-8/
%R 10.4064/cm98-2-8
%G fr
%F 10_4064_cm98_2_8
F. Ben Saïd; J.-L. Nicolas. Sur une application de la formule de Selberg–Delange. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 223-247. doi : 10.4064/cm98-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-8/

Cité par Sources :