Sur une application de la formule de Selberg–Delange
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 223-247
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
E. Landau has given an asymptotic estimate for the
number of integers up to $x$ whose prime factors all belong to
some arithmetic progressions.
In this paper, by using the Selberg–Delange formula, we evaluate
the number of elements of somewhat
more complicated sets. For instance, if $\omega(m)$ (resp.
${\mit\Omega}(m)$) denotes
the number of prime factors of $m$ without multiplicity (resp. with
multiplicity), we give an asymptotic estimate as $x\to \infty$ of the
number of integers $m$ satisfying $2^{\omega(m)}m\le x$, all prime factors
of $m$ are congruent to $3$, $5$ or $6$ modulo $7$, ${\mit\Omega}(m)\equiv
i \pmod{2}$
(where $i=0$ or $1$), and $m\equiv l \pmod{b}$.The above quantity has appeared in the paper \cite{BNSL}
to estimate the
number of elements up to $x$ of the set $\cal A$ of positive integers
containing $1$, $2$ and $3$ and such that the number
$p({\cal A},n)$ of partitions of $n$ with parts in
$\cal A$ is even, for all $n\ge 4$.
Mots-clés :
landau has given asymptotic estimate number integers whose prime factors belong arithmetic progressions paper using selberg delange formula evaluate number elements somewhat complicated sets instance omega resp mit omega denotes number prime factors without multiplicity resp multiplicity asymptotic estimate infty number integers satisfying omega prime factors congruent modulo mit omega equiv pmod where equiv pmod above quantity has appeared paper cite bnsl estimate number elements set cal positive integers containing number cal partitions parts cal even
Affiliations des auteurs :
F. Ben Saïd 1 ; J.-L. Nicolas 2
@article{10_4064_cm98_2_8,
author = {F. Ben Sa{\"\i}d and J.-L. Nicolas},
title = {Sur une application de la formule de {Selberg{\textendash}Delange}},
journal = {Colloquium Mathematicum},
pages = {223--247},
year = {2003},
volume = {98},
number = {2},
doi = {10.4064/cm98-2-8},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-8/}
}
F. Ben Saïd; J.-L. Nicolas. Sur une application de la formule de Selberg–Delange. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 223-247. doi: 10.4064/cm98-2-8
Cité par Sources :