A pinching theorem on complete submanifolds with parallel mean curvature vectors
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 189-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M$ be an $n$-dimensional complete immersed submanifold with parallel mean curvature vectors in an $(n+p)$-dimensional Riemannian manifold $N$ of constant curvature $c>0$. Denote the square of length and the length of the trace of the second fundamental tensor of $M$ by $S$ and $H$, respectively. We prove that if $$ S\leq\frac{1}{n-1}\,H^2+2c,\ \quad n\geq 4, $$ or $$ S\leq\frac{1}{2} \, H^2 + \min\bigg(2,\frac{3p-3}{2p-3}\bigg)c,\ \quad n=3, $$ then $M$ is umbilical. This result generalizes the Okumura–Hasanis pinching theorem to the case of higher codimensions.
DOI : 10.4064/cm98-2-5
Keywords: n dimensional complete immersed submanifold parallel mean curvature vectors dimensional riemannian manifold constant curvature denote square length length trace second fundamental tensor respectively prove leq frac n quad geq leq frac min bigg frac p p bigg quad umbilical result generalizes okumura hasanis pinching theorem higher codimensions

Ziqi Sun 1

1 Department of Mathematics and Statistics Wichita State University Wichita, KS 67226, U.S.A.
@article{10_4064_cm98_2_5,
     author = {Ziqi Sun},
     title = {A pinching theorem on complete 
submanifolds with parallel mean curvature vectors},
     journal = {Colloquium Mathematicum},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/}
}
TY  - JOUR
AU  - Ziqi Sun
TI  - A pinching theorem on complete 
submanifolds with parallel mean curvature vectors
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 189
EP  - 199
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/
DO  - 10.4064/cm98-2-5
LA  - en
ID  - 10_4064_cm98_2_5
ER  - 
%0 Journal Article
%A Ziqi Sun
%T A pinching theorem on complete 
submanifolds with parallel mean curvature vectors
%J Colloquium Mathematicum
%D 2003
%P 189-199
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/
%R 10.4064/cm98-2-5
%G en
%F 10_4064_cm98_2_5
Ziqi Sun. A pinching theorem on complete 
submanifolds with parallel mean curvature vectors. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 189-199. doi : 10.4064/cm98-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/

Cité par Sources :