A pinching theorem on complete
submanifolds with parallel mean curvature vectors
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 189-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M$ be an $n$-dimensional complete immersed submanifold with parallel
mean curvature vectors in an $(n+p)$-dimensional Riemannian manifold $N$ of
constant curvature $c>0$. Denote the square of length and the length of the
trace of the second fundamental tensor of $M$ by $S$ and $H$, respectively.
We prove that if
$$
S\leq\frac{1}{n-1}\,H^2+2c,\ \quad n\geq 4,
$$
or
$$
S\leq\frac{1}{2} \, H^2 + \min\bigg(2,\frac{3p-3}{2p-3}\bigg)c,\ \quad
n=3,
$$
then $M$ is umbilical. This result generalizes the
Okumura–Hasanis pinching
theorem to the case of higher codimensions.
Keywords:
n dimensional complete immersed submanifold parallel mean curvature vectors dimensional riemannian manifold constant curvature denote square length length trace second fundamental tensor respectively prove leq frac n quad geq leq frac min bigg frac p p bigg quad umbilical result generalizes okumura hasanis pinching theorem higher codimensions
Affiliations des auteurs :
Ziqi Sun 1
@article{10_4064_cm98_2_5,
author = {Ziqi Sun},
title = {A pinching theorem on complete
submanifolds with parallel mean curvature vectors},
journal = {Colloquium Mathematicum},
pages = {189--199},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2003},
doi = {10.4064/cm98-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/}
}
TY - JOUR AU - Ziqi Sun TI - A pinching theorem on complete submanifolds with parallel mean curvature vectors JO - Colloquium Mathematicum PY - 2003 SP - 189 EP - 199 VL - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-5/ DO - 10.4064/cm98-2-5 LA - en ID - 10_4064_cm98_2_5 ER -
Ziqi Sun. A pinching theorem on complete submanifolds with parallel mean curvature vectors. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 189-199. doi: 10.4064/cm98-2-5
Cité par Sources :