On split-by-nilpotent extensions
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 259-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ and $R$ be two artin algebras such that $R$ is a split extension of $A$ by a nilpotent ideal. We prove that if $R$ is quasi-tilted, or tame and tilted, then so is $A$. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting $R$-modules and the tilting $A$-modules.
DOI : 10.4064/cm98-2-10
Keywords: artin algebras split extension nilpotent ideal prove quasi tilted tame tilted moreover generalizations these properties laura shod inherited study relationship between tilting r modules tilting a modules

Ibrahim Assem 1 ; Dan Zacharia 2

1 Département de Matématiques Université de Sherbrooke Sherbrooke, Québec J1K 2R1, Canada
2 Department of Mathematics Syracuse University Syracuse, NY 13244, U.S.A.
@article{10_4064_cm98_2_10,
     author = {Ibrahim Assem and Dan Zacharia},
     title = {On split-by-nilpotent extensions},
     journal = {Colloquium Mathematicum},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-10/}
}
TY  - JOUR
AU  - Ibrahim Assem
AU  - Dan Zacharia
TI  - On split-by-nilpotent extensions
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 259
EP  - 275
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-10/
DO  - 10.4064/cm98-2-10
LA  - en
ID  - 10_4064_cm98_2_10
ER  - 
%0 Journal Article
%A Ibrahim Assem
%A Dan Zacharia
%T On split-by-nilpotent extensions
%J Colloquium Mathematicum
%D 2003
%P 259-275
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-10/
%R 10.4064/cm98-2-10
%G en
%F 10_4064_cm98_2_10
Ibrahim Assem; Dan Zacharia. On split-by-nilpotent extensions. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 259-275. doi : 10.4064/cm98-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-10/

Cité par Sources :