The Diophantine equation $Dx^2+2^{2m+1}=y^{n}$
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 147-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that for a given squarefree positive integer $D$, the equation of the title has no solutions in integers $x>0$, $m>0$, $n\ge 3$ and $y$ odd, nor unless $D\equiv 14 \ ({\rm mod}\hskip 1.7pt16)$ in integers $x>0$, $m=0$, $n\ge 3$, $y>0$, provided in each case that $n$ does not divide the class number of the imaginary quadratic field containing $\sqrt {-2D}$, except for a small number of (stated) exceptions.
DOI : 10.4064/cm98-2-1
Keywords: shown given squarefree positive integer equation title has solutions integers odd nor unless equiv mod hskip integers provided each does divide class number imaginary quadratic field containing sqrt except small number stated exceptions

J. H. E. Cohn 1

1 23, Highfield Gardens London NW11 9HD, U.K.
@article{10_4064_cm98_2_1,
     author = {J. H. E. Cohn},
     title = {The {Diophantine} equation $Dx^2+2^{2m+1}=y^{n}$},
     journal = {Colloquium Mathematicum},
     pages = {147--154},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-1/}
}
TY  - JOUR
AU  - J. H. E. Cohn
TI  - The Diophantine equation $Dx^2+2^{2m+1}=y^{n}$
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 147
EP  - 154
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-1/
DO  - 10.4064/cm98-2-1
LA  - en
ID  - 10_4064_cm98_2_1
ER  - 
%0 Journal Article
%A J. H. E. Cohn
%T The Diophantine equation $Dx^2+2^{2m+1}=y^{n}$
%J Colloquium Mathematicum
%D 2003
%P 147-154
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-1/
%R 10.4064/cm98-2-1
%G en
%F 10_4064_cm98_2_1
J. H. E. Cohn. The Diophantine equation $Dx^2+2^{2m+1}=y^{n}$. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 147-154. doi : 10.4064/cm98-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-1/

Cité par Sources :