Mean value densities for temperatures
Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 87-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A positive measurable function $K$ on a domain $D$ in ${{\mathbb R}}^{n+1}$ is called a mean value density for temperatures if $u(0,0) = \int \int _D K(x,t)u(x,t)\, dx\, dt$ for all temperatures $u$ on $\, \overline {\! D}$. We construct such a density for some domains. The existence of a bounded density and a density which is bounded away from zero on $D$ is also discussed.
Keywords:
positive measurable function domain mathbb called mean value density temperatures int int t temperatures overline construct density domains existence bounded density density which bounded away zero discussed
Affiliations des auteurs :
N. Suzuki 1 ; N. A. Watson 2
@article{10_4064_cm98_1_7,
author = {N. Suzuki and N. A. Watson},
title = {Mean value densities for temperatures},
journal = {Colloquium Mathematicum},
pages = {87--96},
year = {2003},
volume = {98},
number = {1},
doi = {10.4064/cm98-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-7/}
}
N. Suzuki; N. A. Watson. Mean value densities for temperatures. Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 87-96. doi: 10.4064/cm98-1-7
Cité par Sources :