Mean value densities for temperatures
Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A positive measurable function $K$ on a domain $D$ in ${{\mathbb R}}^{n+1}$ is called a mean value density for temperatures if $u(0,0) = \int \int _D K(x,t)u(x,t)\, dx\, dt$ for all temperatures $u$ on $\, \overline {\! D}$. We construct such a density for some domains. The existence of a bounded density and a density which is bounded away from zero on $D$ is also discussed.
DOI : 10.4064/cm98-1-7
Keywords: positive measurable function domain mathbb called mean value density temperatures int int t temperatures overline construct density domains existence bounded density density which bounded away zero discussed

N. Suzuki 1 ; N. A. Watson 2

1 Graduate School of Mathematics Nagoya University Nagoya, Japan
2 Department of Mathematics and Statistics University of Canterbury Christchurch, New Zealand
@article{10_4064_cm98_1_7,
     author = {N. Suzuki and N. A. Watson},
     title = {Mean value densities for temperatures},
     journal = {Colloquium Mathematicum},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2003},
     doi = {10.4064/cm98-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-7/}
}
TY  - JOUR
AU  - N. Suzuki
AU  - N. A. Watson
TI  - Mean value densities for temperatures
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 87
EP  - 96
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-7/
DO  - 10.4064/cm98-1-7
LA  - en
ID  - 10_4064_cm98_1_7
ER  - 
%0 Journal Article
%A N. Suzuki
%A N. A. Watson
%T Mean value densities for temperatures
%J Colloquium Mathematicum
%D 2003
%P 87-96
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-7/
%R 10.4064/cm98-1-7
%G en
%F 10_4064_cm98_1_7
N. Suzuki; N. A. Watson. Mean value densities for temperatures. Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 87-96. doi : 10.4064/cm98-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-7/

Cité par Sources :