Iterated tilted and tilted stably hereditary algebras
Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 49-62.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a stably hereditary bound quiver algebra $A=KQ/I$ is iterated tilted if and only if $(Q,I)$ satisfies the clock condition, and that in this case it is of type~$Q$. Furthermore, $A$ is tilted if and only if $(Q,I)$ does not contain any double-zero.
DOI : 10.4064/cm98-1-4
Keywords: prove stably hereditary bound quiver algebra iterated tilted only satisfies clock condition type furthermore tilted only does contain double zero

Jessica Lévesque 1

1 Département de Mathématiques et Informatique Université de Sherbrooke Sherbrooke, Québec J1K 2R1, Canada
@article{10_4064_cm98_1_4,
     author = {Jessica L\'evesque},
     title = {Iterated tilted and
tilted stably hereditary algebras},
     journal = {Colloquium Mathematicum},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2003},
     doi = {10.4064/cm98-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-4/}
}
TY  - JOUR
AU  - Jessica Lévesque
TI  - Iterated tilted and
tilted stably hereditary algebras
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 49
EP  - 62
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-4/
DO  - 10.4064/cm98-1-4
LA  - en
ID  - 10_4064_cm98_1_4
ER  - 
%0 Journal Article
%A Jessica Lévesque
%T Iterated tilted and
tilted stably hereditary algebras
%J Colloquium Mathematicum
%D 2003
%P 49-62
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-4/
%R 10.4064/cm98-1-4
%G en
%F 10_4064_cm98_1_4
Jessica Lévesque. Iterated tilted and
tilted stably hereditary algebras. Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 49-62. doi : 10.4064/cm98-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-4/

Cité par Sources :