A Hilbert–Mumford criterion for $SL_2$-actions
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 151-161
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let the special linear group $G := \mathop {\rm SL}\nolimits _{2}$ act regularly on a
${{\mathbb Q}}$-factorial variety $X$. Consider a maximal torus $T \subset G$ and its normalizer $N \subset G$. We prove: If $U \subset X$ is a maximal open $N$-invariant subset admitting a good quotient $U \to U /\! \! /N$ with a divisorial quotient space, then the intersection $W(U)$ of all translates $g \cdot U$ is open in $X$ and admits a good quotient $W(U) \to W(U) /\! \! /G$ with a divisorial quotient space. Conversely, we show that every maximal open $G$-invariant subset $W \subset X$ admitting a good quotient $W \to W /\! \! /G$ with a divisorial quotient space is of the form $W = W(U)$ for some maximal open $N$-invariant $U$ as above.
Keywords:
special linear group mathop nolimits act regularly mathbb factorial variety consider maximal torus subset its normalizer subset prove subset maximal n invariant subset admitting quotient divisorial quotient space intersection translates cdot admits quotient divisorial quotient space conversely every maximal g invariant subset subset admitting quotient divisorial quotient space form maximal n invariant above
Affiliations des auteurs :
Jürgen Hausen 1
@article{10_4064_cm97_2_2,
author = {J\"urgen Hausen},
title = {A {Hilbert{\textendash}Mumford} criterion for $SL_2$-actions},
journal = {Colloquium Mathematicum},
pages = {151--161},
year = {2003},
volume = {97},
number = {2},
doi = {10.4064/cm97-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-2/}
}
Jürgen Hausen. A Hilbert–Mumford criterion for $SL_2$-actions. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 151-161. doi: 10.4064/cm97-2-2
Cité par Sources :