A Hilbert–Mumford criterion for $SL_2$-actions
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 151-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let the special linear group $G := \mathop {\rm SL}\nolimits _{2}$ act regularly on a ${{\mathbb Q}}$-factorial variety $X$. Consider a maximal torus $T \subset G$ and its normalizer $N \subset G$. We prove: If $U \subset X$ is a maximal open $N$-invariant subset admitting a good quotient $U \to U /\! \! /N$ with a divisorial quotient space, then the intersection $W(U)$ of all translates $g \cdot U$ is open in $X$ and admits a good quotient $W(U) \to W(U) /\! \! /G$ with a divisorial quotient space. Conversely, we show that every maximal open $G$-invariant subset $W \subset X$ admitting a good quotient $W \to W /\! \! /G$ with a divisorial quotient space is of the form $W = W(U)$ for some maximal open $N$-invariant $U$ as above.
DOI : 10.4064/cm97-2-2
Keywords: special linear group mathop nolimits act regularly mathbb factorial variety consider maximal torus subset its normalizer subset prove subset maximal n invariant subset admitting quotient divisorial quotient space intersection translates cdot admits quotient divisorial quotient space conversely every maximal g invariant subset subset admitting quotient divisorial quotient space form maximal n invariant above

Jürgen Hausen 1

1 Mathematisches Forschungsinstitut Oberwolfach Lorenzenhof 77709 Oberwolfach-Walke, Germany
@article{10_4064_cm97_2_2,
     author = {J\"urgen Hausen},
     title = {A {Hilbert{\textendash}Mumford} criterion for $SL_2$-actions},
     journal = {Colloquium Mathematicum},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2003},
     doi = {10.4064/cm97-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-2/}
}
TY  - JOUR
AU  - Jürgen Hausen
TI  - A Hilbert–Mumford criterion for $SL_2$-actions
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 151
EP  - 161
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-2/
DO  - 10.4064/cm97-2-2
LA  - en
ID  - 10_4064_cm97_2_2
ER  - 
%0 Journal Article
%A Jürgen Hausen
%T A Hilbert–Mumford criterion for $SL_2$-actions
%J Colloquium Mathematicum
%D 2003
%P 151-161
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-2/
%R 10.4064/cm97-2-2
%G en
%F 10_4064_cm97_2_2
Jürgen Hausen. A Hilbert–Mumford criterion for $SL_2$-actions. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 151-161. doi : 10.4064/cm97-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-2/

Cité par Sources :