A convolution property of the Cantor–Lebesgue measure, II
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 23-28.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $1\leq p,q \leq \infty $, we prove that the convolution operator generated by the Cantor–Lebesgue measure on the circle ${{\mathbb T}}$ is a contraction whenever it is bounded from $L^p ({{\mathbb T}} )$ to $L^q ({{\mathbb T}} )$. We also give a condition on $p$ which is necessary if this operator maps $L^p ({{\mathbb T}})$ into $L^2 ({{\mathbb T}} )$.
DOI : 10.4064/cm97-1-3
Keywords: leq leq infty prove convolution operator generated cantor lebesgue measure circle mathbb contraction whenever bounded mathbb mathbb condition which necessary operator maps mathbb mathbb

Daniel M. Oberlin 1

1 Department of Mathematics Florida State University Tallahassee, FL 32306-4510, U.S.A.
@article{10_4064_cm97_1_3,
     author = {Daniel M. Oberlin},
     title = {A convolution property of the
 {Cantor{\textendash}Lebesgue} measure, {II}},
     journal = {Colloquium Mathematicum},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2003},
     doi = {10.4064/cm97-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-3/}
}
TY  - JOUR
AU  - Daniel M. Oberlin
TI  - A convolution property of the
 Cantor–Lebesgue measure, II
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 23
EP  - 28
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-3/
DO  - 10.4064/cm97-1-3
LA  - en
ID  - 10_4064_cm97_1_3
ER  - 
%0 Journal Article
%A Daniel M. Oberlin
%T A convolution property of the
 Cantor–Lebesgue measure, II
%J Colloquium Mathematicum
%D 2003
%P 23-28
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-3/
%R 10.4064/cm97-1-3
%G en
%F 10_4064_cm97_1_3
Daniel M. Oberlin. A convolution property of the
 Cantor–Lebesgue measure, II. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 23-28. doi : 10.4064/cm97-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-3/

Cité par Sources :