Global pinching theorems for minimal submanifolds in spheres
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 225-234.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M$ be a compact submanifold with parallel mean curvature vector embedded in the unit sphere $S^{n+p}(1)$. By using the Sobolev inequalities of P. Li to get $L_p$ estimates for the norms of certain tensors related to the second fundamental form of $M$, we prove some rigidity theorems. Denote by $H$ and $\| \sigma \| _p$ the mean curvature and the $L_p$ norm of the square length of the second fundamental form of $M$. We show that there is a constant $C$ such that if $\| \sigma \| _{n/2} C,$ then $M$ is a minimal submanifold in the sphere $S^{n+p-1}(1+H^2)$ with sectional curvature $ 1+H^2. $
DOI : 10.4064/cm96-2-7
Keywords: compact submanifold parallel mean curvature vector embedded unit sphere using sobolev inequalities get estimates norms certain tensors related second fundamental form prove rigidity theorems denote sigma mean curvature norm square length second fundamental form there constant sigma minimal submanifold sphere p sectional curvature

Kairen Cai 1

1 Department of Mathematics Hangzhou Teachers' College 96 Wen Yi Road Hangzhou 310036, P.R. China
@article{10_4064_cm96_2_7,
     author = {Kairen Cai},
     title = {Global pinching theorems for
 minimal submanifolds in spheres},
     journal = {Colloquium Mathematicum},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2003},
     doi = {10.4064/cm96-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-7/}
}
TY  - JOUR
AU  - Kairen Cai
TI  - Global pinching theorems for
 minimal submanifolds in spheres
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 225
EP  - 234
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-7/
DO  - 10.4064/cm96-2-7
LA  - en
ID  - 10_4064_cm96_2_7
ER  - 
%0 Journal Article
%A Kairen Cai
%T Global pinching theorems for
 minimal submanifolds in spheres
%J Colloquium Mathematicum
%D 2003
%P 225-234
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-7/
%R 10.4064/cm96-2-7
%G en
%F 10_4064_cm96_2_7
Kairen Cai. Global pinching theorems for
 minimal submanifolds in spheres. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 225-234. doi : 10.4064/cm96-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-7/

Cité par Sources :