A-Rings
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 277-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A ring $R$ is called an E-ring if every endomorphism of $R^{+},$ the additive group of $R,$ is multiplication on the left by an element of $R.$ This is a well known notion in the theory of abelian groups. We want to change the “E” as in endomorphisms to an “A” as in automorphisms: We define a ring to be an A-ring if every automorphism of $R^{+}$ is multiplication on the left by some element of $R.$ We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed A-ring that is not an E-ring, it is still open if there are any tffr A-rings that are not E-rings. We will employ the Strong Black Box [5] to construct large integral domains that are A-rings but not E-rings.
DOI : 10.4064/cm96-2-10
Keywords: ring called e ring every endomorphism additive group multiplication element known notion theory abelian groups want change endomorphisms automorphisms define ring a ring every automorphism multiplication element many torsion free finite rank tffr a rings actually e rings while have example mixed a ring e ring still there tffr a rings e rings employ strong black box construct large integral domains a rings e rings

Manfred Dugas 1 ; Shalom Feigelstock 2

1 Department of Mathematics Baylor University Waco, Texas 76798, U.S.A.
2 Department of Mathematics Bar-Ilan University Ramat Gan, Israel
@article{10_4064_cm96_2_10,
     author = {Manfred Dugas and Shalom Feigelstock},
     title = {A-Rings},
     journal = {Colloquium Mathematicum},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2003},
     doi = {10.4064/cm96-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-10/}
}
TY  - JOUR
AU  - Manfred Dugas
AU  - Shalom Feigelstock
TI  - A-Rings
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 277
EP  - 292
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-10/
DO  - 10.4064/cm96-2-10
LA  - en
ID  - 10_4064_cm96_2_10
ER  - 
%0 Journal Article
%A Manfred Dugas
%A Shalom Feigelstock
%T A-Rings
%J Colloquium Mathematicum
%D 2003
%P 277-292
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-10/
%R 10.4064/cm96-2-10
%G en
%F 10_4064_cm96_2_10
Manfred Dugas; Shalom Feigelstock. A-Rings. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 277-292. doi : 10.4064/cm96-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-10/

Cité par Sources :