Structure of flat covers of injective modules
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to discuss the flat covers of injective modules over a Noetherian ring. Let $R$ be a commutative Noetherian ring and let $E$ be an injective $R$-module. We prove that the flat cover of $E$ is isomorphic to $\prod _{p\in {\rm Att}_{R}(E)}T_p$. As a consequence, we give an answer to Xu's question [10, 4.4.9]: for a prime ideal $p$, when does $T_p$ appear in the flat cover of $E(R/\underline m)$?
DOI : 10.4064/cm96-1-9
Keywords: paper discuss flat covers injective modules noetherian ring commutative noetherian ring injective r module prove flat cover isomorphic prod att consequence answer xus question prime ideal does appear flat cover underline

Sh. Payrovi 1 ; M. Akhavizadegan 1

1 Imam Khomeini International University P.O. Box 288 Qazvin, Iran
@article{10_4064_cm96_1_9,
     author = {Sh. Payrovi and M. Akhavizadegan},
     title = {Structure of flat covers of injective modules},
     journal = {Colloquium Mathematicum},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2003},
     doi = {10.4064/cm96-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-9/}
}
TY  - JOUR
AU  - Sh. Payrovi
AU  - M. Akhavizadegan
TI  - Structure of flat covers of injective modules
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 93
EP  - 101
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-9/
DO  - 10.4064/cm96-1-9
LA  - en
ID  - 10_4064_cm96_1_9
ER  - 
%0 Journal Article
%A Sh. Payrovi
%A M. Akhavizadegan
%T Structure of flat covers of injective modules
%J Colloquium Mathematicum
%D 2003
%P 93-101
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-9/
%R 10.4064/cm96-1-9
%G en
%F 10_4064_cm96_1_9
Sh. Payrovi; M. Akhavizadegan. Structure of flat covers of injective modules. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 93-101. doi : 10.4064/cm96-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-9/

Cité par Sources :