A sharp bound for a sine polynomial
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 83-91.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that $$ \left|\sum_{k=1}^{n}\frac{\sin((2k-1)x)}{k}\right| {\rm Si}(\pi)=1.8519\dots $$ for all integers $n\geq 1$ and real numbers $x$. The upper bound ${\rm Si}(\pi)$ is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).
DOI : 10.4064/cm96-1-8
Keywords: prove sum frac sin k right dots integers geq real numbers upper bound best possible result refines inequalities due fej lenz

Horst Alzer 1 ; Stamatis Koumandos 2

1 Morsbacher Str. 10 51545 Waldbröl, Germany
2 Department of Mathematics and Statistics The University of Cyprus P.O. Box 20537 1678 Nicosia, Cyprus
@article{10_4064_cm96_1_8,
     author = {Horst Alzer and Stamatis Koumandos},
     title = {A sharp bound for a sine polynomial},
     journal = {Colloquium Mathematicum},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2003},
     doi = {10.4064/cm96-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-8/}
}
TY  - JOUR
AU  - Horst Alzer
AU  - Stamatis Koumandos
TI  - A sharp bound for a sine polynomial
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 83
EP  - 91
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-8/
DO  - 10.4064/cm96-1-8
LA  - en
ID  - 10_4064_cm96_1_8
ER  - 
%0 Journal Article
%A Horst Alzer
%A Stamatis Koumandos
%T A sharp bound for a sine polynomial
%J Colloquium Mathematicum
%D 2003
%P 83-91
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-8/
%R 10.4064/cm96-1-8
%G en
%F 10_4064_cm96_1_8
Horst Alzer; Stamatis Koumandos. A sharp bound for a sine polynomial. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 83-91. doi : 10.4064/cm96-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-8/

Cité par Sources :