The natural operators $T^{(0,0)}\rightsquigarrow T^{(1,1)}T^{(r)}$
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the problem of how a map $f:M\to {{\mathbb R}}$ on an $n$-manifold $M$ induces canonically an affinor $A(f):TT^{(r)}M\to TT^{(r)}M$ on the vector $r$-tangent bundle $T^{(r)}M=(J^r(M,{{\mathbb R}})_0)^*$ over $M$. This problem is reflected in the concept of natural operators $A:T^{(0,0)}_{| {\cal M} f_n} \rightsquigarrow T^{(1,1)}T^{(r)}$. For integers $r\geq 1$ and $n\geq 2$ we prove that the space of all such operators is a free $(r+1)^2$-dimensional module over ${\cal C}^\infty (T^{(r)}{{\mathbb R}})$ and we construct explicitly a basis of this module. \par
DOI : 10.4064/cm96-1-2
Keywords: study problem map mathbb n manifold induces canonically affinor vector r tangent bundle mathbb * problem reflected concept natural operators cal rightsquigarrow integers geq geq prove space operators dimensional module cal infty mathbb construct explicitly basis module par

Włodzimierz M. Mikulski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm96_1_2,
     author = {W{\l}odzimierz M. Mikulski},
     title = {The natural operators $T^{(0,0)}\rightsquigarrow T^{(1,1)}T^{(r)}$},
     journal = {Colloquium Mathematicum},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2003},
     doi = {10.4064/cm96-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-2/}
}
TY  - JOUR
AU  - Włodzimierz M. Mikulski
TI  - The natural operators $T^{(0,0)}\rightsquigarrow T^{(1,1)}T^{(r)}$
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 5
EP  - 16
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-2/
DO  - 10.4064/cm96-1-2
LA  - en
ID  - 10_4064_cm96_1_2
ER  - 
%0 Journal Article
%A Włodzimierz M. Mikulski
%T The natural operators $T^{(0,0)}\rightsquigarrow T^{(1,1)}T^{(r)}$
%J Colloquium Mathematicum
%D 2003
%P 5-16
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-2/
%R 10.4064/cm96-1-2
%G en
%F 10_4064_cm96_1_2
Włodzimierz M. Mikulski. The natural operators $T^{(0,0)}\rightsquigarrow T^{(1,1)}T^{(r)}$. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 5-16. doi : 10.4064/cm96-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-2/

Cité par Sources :