A representation theorem for Chain rings
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 103-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A ring $A$ is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let $R$ be a commutative chain ring. Let $A$ be a faithful $R$-algebra which is a chain ring such that $\hskip 2.5pt\overline {\hskip -2.5pt A\hskip -.1pt}\hskip .1pt= A/J(A)$ is a separable field extension of ${\hskip 1.7pt\overline {\hskip -1.7pt R\hskip -.3pt}\hskip .3pt} = R/J(R)$. It follows from a recent result by Alkhamees and Singh that $A $ has a commutative $R$-subalgebra $R_{0}$ which is a chain ring such that $A = R_{0}+J(A)$ and $R_{0}\cap J(A) = J(R_{0}) = J(R)R_{0}$. The structure of $A$ in terms of a skew polynomial ring over $R_{0}$ is determined.
Keywords:
ring called chain ring local sided artinian principal ideal ring commutative chain ring faithful r algebra which chain ring hskip overline hskip hskip hskip separable field extension hskip overline hskip hskip hskip follows recent result alkhamees singh has commutative r subalgebra which chain ring cap structure terms skew polynomial ring determined
Affiliations des auteurs :
Yousef Alkhamees 1 ; Hanan Alolayan 2 ; Surjeet Singh 2
@article{10_4064_cm96_1_10,
author = {Yousef Alkhamees and Hanan Alolayan and Surjeet Singh},
title = {A representation theorem for {Chain} rings},
journal = {Colloquium Mathematicum},
pages = {103--119},
publisher = {mathdoc},
volume = {96},
number = {1},
year = {2003},
doi = {10.4064/cm96-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/}
}
TY - JOUR AU - Yousef Alkhamees AU - Hanan Alolayan AU - Surjeet Singh TI - A representation theorem for Chain rings JO - Colloquium Mathematicum PY - 2003 SP - 103 EP - 119 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/ DO - 10.4064/cm96-1-10 LA - en ID - 10_4064_cm96_1_10 ER -
Yousef Alkhamees; Hanan Alolayan; Surjeet Singh. A representation theorem for Chain rings. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 103-119. doi: 10.4064/cm96-1-10
Cité par Sources :