A representation theorem for Chain rings
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 103-119.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A ring $A$ is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let $R$ be a commutative chain ring. Let $A$ be a faithful $R$-algebra which is a chain ring such that $\hskip 2.5pt\overline {\hskip -2.5pt A\hskip -.1pt}\hskip .1pt= A/J(A)$ is a separable field extension of ${\hskip 1.7pt\overline {\hskip -1.7pt R\hskip -.3pt}\hskip .3pt} = R/J(R)$. It follows from a recent result by Alkhamees and Singh that $A $ has a commutative $R$-subalgebra $R_{0}$ which is a chain ring such that $A = R_{0}+J(A)$ and $R_{0}\cap J(A) = J(R_{0}) = J(R)R_{0}$. The structure of $A$ in terms of a skew polynomial ring over $R_{0}$ is determined.
DOI : 10.4064/cm96-1-10
Keywords: ring called chain ring local sided artinian principal ideal ring commutative chain ring faithful r algebra which chain ring hskip overline hskip hskip hskip separable field extension hskip overline hskip hskip hskip follows recent result alkhamees singh has commutative r subalgebra which chain ring cap structure terms skew polynomial ring determined

Yousef Alkhamees 1 ; Hanan Alolayan 2 ; Surjeet Singh 2

1 Department of Mathematics King Saud University P.O. Box 2455, Riyadh 11451 Kingdom of Saudi Arabia
2 Department of Mathematics King Saud University PO Box 2455, Riyadh 11451 Kingdom of Saudi Arabia
@article{10_4064_cm96_1_10,
     author = {Yousef Alkhamees and Hanan Alolayan and Surjeet Singh},
     title = {A representation theorem for {Chain} rings},
     journal = {Colloquium Mathematicum},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2003},
     doi = {10.4064/cm96-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/}
}
TY  - JOUR
AU  - Yousef Alkhamees
AU  - Hanan Alolayan
AU  - Surjeet Singh
TI  - A representation theorem for Chain rings
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 103
EP  - 119
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/
DO  - 10.4064/cm96-1-10
LA  - en
ID  - 10_4064_cm96_1_10
ER  - 
%0 Journal Article
%A Yousef Alkhamees
%A Hanan Alolayan
%A Surjeet Singh
%T A representation theorem for Chain rings
%J Colloquium Mathematicum
%D 2003
%P 103-119
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/
%R 10.4064/cm96-1-10
%G en
%F 10_4064_cm96_1_10
Yousef Alkhamees; Hanan Alolayan; Surjeet Singh. A representation theorem for Chain rings. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 103-119. doi : 10.4064/cm96-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-10/

Cité par Sources :