Almost perfect domains
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 285-301.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Commutative rings all of whose quotients over non-zero ideals are perfect rings are called almost perfect. Revisiting a paper by J. R. Smith on local domains with TTN, some basic results on these domains and their modules are obtained. Various examples of local almost perfect domains with different features are exhibited.
DOI : 10.4064/cm95-2-11
Keywords: commutative rings whose quotients non zero ideals perfect rings called almost perfect revisiting paper smith local domains ttn basic results these domains their modules obtained various examples local almost perfect domains different features exhibited

S. Bazzoni 1 ; L. Salce 1

1 Dipartimento di Matematica Pura e Applicata Università di Padova Via Belzoni 7 35131 Padova, Italy
@article{10_4064_cm95_2_11,
     author = {S. Bazzoni and L. Salce},
     title = {Almost perfect domains},
     journal = {Colloquium Mathematicum},
     pages = {285--301},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2003},
     doi = {10.4064/cm95-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-11/}
}
TY  - JOUR
AU  - S. Bazzoni
AU  - L. Salce
TI  - Almost perfect domains
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 285
EP  - 301
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-11/
DO  - 10.4064/cm95-2-11
LA  - en
ID  - 10_4064_cm95_2_11
ER  - 
%0 Journal Article
%A S. Bazzoni
%A L. Salce
%T Almost perfect domains
%J Colloquium Mathematicum
%D 2003
%P 285-301
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-11/
%R 10.4064/cm95-2-11
%G en
%F 10_4064_cm95_2_11
S. Bazzoni; L. Salce. Almost perfect domains. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 285-301. doi : 10.4064/cm95-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-11/

Cité par Sources :