Structure of geodesics in the Cayley graph of infinite Coxeter groups
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(W,S)$ be a Coxeter system such that no two generators in $S$ commute. Assume that the Cayley graph of $(W,S)$ does not contain adjacent hexagons. Then for any two vertices $x$ and $y$ in the Cayley graph of $W$ and any number $k\le d={\rm dist}(x,y)$ there are at most two vertices $z$ such that ${\rm dist}(x,z)=k$ and ${\rm dist}(z,y)=d-k$. Allowing adjacent hexagons, but assuming that no three hexagons can be adjacent to each other, we show that the number of such intermediate vertices at a given distance from $x$ and $y$ is at most 3. This means that the group $W$ is hyperbolic in a sense stronger than that of Gromov.
DOI : 10.4064/cm95-1-7
Keywords: coxeter system generators commute assume cayley graph does contain adjacent hexagons vertices cayley graph number dist there vertices dist dist d k allowing adjacent hexagons assuming three hexagons adjacent each other number intermediate vertices given distance means group hyperbolic sense stronger gromov

Ryszard Szwarc 1

1 Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm95_1_7,
     author = {Ryszard Szwarc},
     title = {Structure of geodesics in the {Cayley} graph of
 infinite {Coxeter} groups},
     journal = {Colloquium Mathematicum},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-7/}
}
TY  - JOUR
AU  - Ryszard Szwarc
TI  - Structure of geodesics in the Cayley graph of
 infinite Coxeter groups
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 79
EP  - 90
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-7/
DO  - 10.4064/cm95-1-7
LA  - en
ID  - 10_4064_cm95_1_7
ER  - 
%0 Journal Article
%A Ryszard Szwarc
%T Structure of geodesics in the Cayley graph of
 infinite Coxeter groups
%J Colloquium Mathematicum
%D 2003
%P 79-90
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-7/
%R 10.4064/cm95-1-7
%G en
%F 10_4064_cm95_1_7
Ryszard Szwarc. Structure of geodesics in the Cayley graph of
 infinite Coxeter groups. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 79-90. doi : 10.4064/cm95-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-7/

Cité par Sources :