A bifurcation theory for some nonlinear elliptic equations
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with the problem $$\cases {-{\mit\Delta} u= f(x,u)+\lambda g(x,u) in ${\mit\Omega},$\cr u_{|\partial {\mit\Omega}}=0,\cr} \tag*{$({\rm P}_{\lambda}) $} $$ where ${\mit\Omega}\subset {\mathbb R}^n$ is a bounded domain, $\lambda\in {\mathbb R}$, and $f, g:{\mit\Omega}\times {\mathbb R}\to {\mathbb R}$ are two Carathéodory functions with $f(x,0)=g(x,0)=0$. Under suitable assumptions, we prove that there exists $\lambda^{*}>0$ such that, for each $\lambda\in( 0,\lambda^{*})$, problem $ ( {\rm P}_{\lambda} )$ admits a non-zero, non-negative strong solution $u_{\lambda}\in \bigcap_{p\geq 2}W^{2,p}({\mit\Omega})$ such that $\lim_{\lambda\to 0^+} \|u_{\lambda}\|_{W^{2,p}({\mit\Omega})}=0$ for all $p\geq 2$. Moreover, the function $\lambda\mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing in $]0,\lambda^{*}[$, where $I_{\lambda}$ is the energy functional related to $({\rm P}_{\lambda})$.
DOI : 10.4064/cm95-1-12
Keywords: problem cases mit delta lambda mit omega partial mit omega tag* lambda where mit omega subset mathbb bounded domain lambda mathbb mit omega times mathbb mathbb carath odory functions under suitable assumptions prove there exists lambda * each lambda lambda * problem lambda admits non zero non negative strong solution lambda bigcap geq mit omega lim lambda lambda mit omega geq moreover function lambda mapsto lambda lambda negative decreasing lambda * where lambda energy functional related lambda

Biagio Ricceri 1

1 Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy
@article{10_4064_cm95_1_12,
     author = {Biagio Ricceri},
     title = {A bifurcation theory
 for some nonlinear elliptic equations},
     journal = {Colloquium Mathematicum},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2003},
     doi = {10.4064/cm95-1-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-12/}
}
TY  - JOUR
AU  - Biagio Ricceri
TI  - A bifurcation theory
 for some nonlinear elliptic equations
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 139
EP  - 151
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-12/
DO  - 10.4064/cm95-1-12
LA  - en
ID  - 10_4064_cm95_1_12
ER  - 
%0 Journal Article
%A Biagio Ricceri
%T A bifurcation theory
 for some nonlinear elliptic equations
%J Colloquium Mathematicum
%D 2003
%P 139-151
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-12/
%R 10.4064/cm95-1-12
%G en
%F 10_4064_cm95_1_12
Biagio Ricceri. A bifurcation theory
 for some nonlinear elliptic equations. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151. doi : 10.4064/cm95-1-12. http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-12/

Cité par Sources :