A bifurcation theory
for some nonlinear elliptic equations
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We deal with the problem
$$\cases {-{\mit\Delta} u=
f(x,u)+\lambda g(x,u)
in ${\mit\Omega},$\cr u_{|\partial {\mit\Omega}}=0,\cr}
\tag*{$({\rm P}_{\lambda}) $}
$$
where ${\mit\Omega}\subset {\mathbb R}^n$ is a bounded domain,
$\lambda\in {\mathbb R}$, and $f, g:{\mit\Omega}\times
{\mathbb R}\to {\mathbb R}$ are two Carathéodory functions with
$f(x,0)=g(x,0)=0$. Under suitable assumptions, we prove that
there exists $\lambda^{*}>0$ such that, for each
$\lambda\in( 0,\lambda^{*})$,
problem $ ( {\rm P}_{\lambda} )$
admits a non-zero, non-negative strong solution $u_{\lambda}\in
\bigcap_{p\geq 2}W^{2,p}({\mit\Omega})$
such that $\lim_{\lambda\to 0^+}
\|u_{\lambda}\|_{W^{2,p}({\mit\Omega})}=0$ for all $p\geq 2$. Moreover,
the function $\lambda\mapsto I_{\lambda}(u_{\lambda})$ is negative
and decreasing in $]0,\lambda^{*}[$, where $I_{\lambda}$ is the energy
functional related to $({\rm P}_{\lambda})$.
Keywords:
problem cases mit delta lambda mit omega partial mit omega tag* lambda where mit omega subset mathbb bounded domain lambda mathbb mit omega times mathbb mathbb carath odory functions under suitable assumptions prove there exists lambda * each lambda lambda * problem lambda admits non zero non negative strong solution lambda bigcap geq mit omega lim lambda lambda mit omega geq moreover function lambda mapsto lambda lambda negative decreasing lambda * where lambda energy functional related lambda
Affiliations des auteurs :
Biagio Ricceri 1
@article{10_4064_cm95_1_12,
author = {Biagio Ricceri},
title = {A bifurcation theory
for some nonlinear elliptic equations},
journal = {Colloquium Mathematicum},
pages = {139--151},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2003},
doi = {10.4064/cm95-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-12/}
}
Biagio Ricceri. A bifurcation theory for some nonlinear elliptic equations. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 139-151. doi: 10.4064/cm95-1-12
Cité par Sources :