Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 285-293
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\alpha _i,\beta _i>0,$ $1\leq i\leq n,$ and for $t>0$ and $x=(
x_1,\ldots ,x_n) \in{\mathbb R}^n,$ let $t\mathbin{\bullet} x=( t^{\alpha
_1}x_1,\ldots ,t^{\alpha _n}x_n)$, $t\mathbin{\circ} x=( t^{\beta
_1}x_1,\ldots ,t^{\beta _n}x_n) $ and $\| x\|
=\sum_{i=1}^n| x_i| ^{1/\alpha _i}$. Let $\varphi _1,\ldots,\varphi _n$
be real functions in $C^\infty ({\mathbb R}^n-\{ 0\}) $
such that $\varphi =( \varphi _1,\ldots ,\varphi _n)$
satisfies $\varphi ( t\mathbin{\bullet} x)
=t\mathbin{\circ} \varphi( x)$.
Let $\gamma >0$ and let $\mu $ be the Borel measure on ${\mathbb R}^{2n}$ given by
$$
\mu(E)=\int_{{\mathbb R}^n}\chi _E( x,\varphi ( x)) \| x\| ^{\gamma -\alpha}\,dx,
$$
where $\alpha =\sum_{i=1}^n\alpha _i$ and $dx$ denotes the Lebesgue measure
on ${\mathbb R}^n$. Let $T_\mu f=\mu *f$ and let $\| T_\mu \| _{p,q}$ be
the operator norm of $T_\mu $ from $L^p({\mathbb R}^{2n}) $ into
$L^q({\mathbb R}^{2n})$, where the $L^p$ spaces are taken with respect to
the Lebesgue measure. The type set $E_\mu $ is defined by
$$
E_\mu =\{ ( 1/p, 1/q) :\| T_\mu \|
_{p,q}\infty,\,1\leq p,q\leq \infty \} .
$$
In the case $\alpha _i\neq \beta _k$ for $1\leq i,k\leq n$ we characterize
the type set under certain additional hypotheses on $\varphi.$
Keywords:
alpha beta leq leq ldots mathbb mathbin bullet alpha ldots alpha mathbin circ beta ldots beta sum alpha varphi ldots varphi real functions infty mathbb n varphi varphi ldots varphi satisfies varphi mathbin bullet mathbin circ varphi gamma borel measure mathbb given int mathbb chi varphi gamma alpha where alpha sum alpha denotes lebesgue measure mathbb *f operator norm mathbb mathbb where spaces taken respect lebesgue measure type set defined infty leq leq infty alpha neq beta leq leq characterize type set under certain additional hypotheses varphi
Affiliations des auteurs :
E. Ferreyra 1 ; T. Godoy 1 ; M. Urciuolo 1
@article{10_4064_cm93_2_8,
author = {E. Ferreyra and T. Godoy and M. Urciuolo},
title = {Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support},
journal = {Colloquium Mathematicum},
pages = {285--293},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {2002},
doi = {10.4064/cm93-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/}
}
TY - JOUR
AU - E. Ferreyra
AU - T. Godoy
AU - M. Urciuolo
TI - Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support
JO - Colloquium Mathematicum
PY - 2002
SP - 285
EP - 293
VL - 93
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/
DO - 10.4064/cm93-2-8
LA - en
ID - 10_4064_cm93_2_8
ER -
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%A M. Urciuolo
%T Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support
%J Colloquium Mathematicum
%D 2002
%P 285-293
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/
%R 10.4064/cm93-2-8
%G en
%F 10_4064_cm93_2_8
E. Ferreyra; T. Godoy; M. Urciuolo. Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 285-293. doi: 10.4064/cm93-2-8
Cité par Sources :