E. Ferreyra  1 ; T. Godoy  1 ; M. Urciuolo  1
@article{10_4064_cm93_2_8,
author = {E. Ferreyra and T. Godoy and M. Urciuolo},
title = {Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support},
journal = {Colloquium Mathematicum},
pages = {285--293},
year = {2002},
volume = {93},
number = {2},
doi = {10.4064/cm93-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/}
}
TY - JOUR
AU - E. Ferreyra
AU - T. Godoy
AU - M. Urciuolo
TI - Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support
JO - Colloquium Mathematicum
PY - 2002
SP - 285
EP - 293
VL - 93
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/
DO - 10.4064/cm93-2-8
LA - en
ID - 10_4064_cm93_2_8
ER -
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%A M. Urciuolo
%T Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support
%J Colloquium Mathematicum
%D 2002
%P 285-293
%V 93
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/
%R 10.4064/cm93-2-8
%G en
%F 10_4064_cm93_2_8
E. Ferreyra; T. Godoy; M. Urciuolo. Convolution operators with
anisotropically homogeneous measures on ${\Bbb R}^{2n}$
with $n$-dimensional support. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 285-293. doi: 10.4064/cm93-2-8
Cité par Sources :