Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
E. Ferreyra 1 ; T. Godoy 1 ; M. Urciuolo 1
@article{10_4064_cm93_2_8, author = {E. Ferreyra and T. Godoy and M. Urciuolo}, title = {Convolution operators with anisotropically homogeneous measures on ${\Bbb R}^{2n}$ with $n$-dimensional support}, journal = {Colloquium Mathematicum}, pages = {285--293}, publisher = {mathdoc}, volume = {93}, number = {2}, year = {2002}, doi = {10.4064/cm93-2-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/} }
TY - JOUR AU - E. Ferreyra AU - T. Godoy AU - M. Urciuolo TI - Convolution operators with anisotropically homogeneous measures on ${\Bbb R}^{2n}$ with $n$-dimensional support JO - Colloquium Mathematicum PY - 2002 SP - 285 EP - 293 VL - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/ DO - 10.4064/cm93-2-8 LA - en ID - 10_4064_cm93_2_8 ER -
%0 Journal Article %A E. Ferreyra %A T. Godoy %A M. Urciuolo %T Convolution operators with anisotropically homogeneous measures on ${\Bbb R}^{2n}$ with $n$-dimensional support %J Colloquium Mathematicum %D 2002 %P 285-293 %V 93 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/ %R 10.4064/cm93-2-8 %G en %F 10_4064_cm93_2_8
E. Ferreyra; T. Godoy; M. Urciuolo. Convolution operators with anisotropically homogeneous measures on ${\Bbb R}^{2n}$ with $n$-dimensional support. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 285-293. doi : 10.4064/cm93-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-8/
Cité par Sources :