A complete analogue of Hardy's theorem on
semisimple Lie groups
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 27-40
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A result by G. H. Hardy ([11]) says that if $f$ and its Fourier transform $\widehat {f}$ are $O(|x|^m e^{-\alpha x^2})$ and $O(|x|^n e^{-x^2/{(4\alpha )}})$ respectively for some $m,n\ge 0$ and $\alpha >0$, then $f$ and $\widehat {f}$ are $P(x)e^{-\alpha x^2}$ and $P'(x)e^{-x^2/{(4\alpha )}}$ respectively for some polynomials $P$ and $P'$. If in particular $f$ is as above, but $\widehat {f}$ is $o(e^{-x^2/{(4\alpha )}})$, then $f= 0$. In this article we will prove a complete analogue of this result for connected noncompact semisimple Lie groups with finite center. Our proof can be carried over to the real reductive groups of the Harish-Chandra class.
Keywords:
result hardy says its fourier transform widehat alpha x alpha respectively alpha widehat alpha x alpha respectively polynomials particular above widehat x alpha article prove complete analogue result connected noncompact semisimple lie groups finite center proof carried real reductive groups harish chandra class
Affiliations des auteurs :
Rudra P. Sarkar 1
@article{10_4064_cm93_1_4,
author = {Rudra P. Sarkar},
title = {A complete analogue of {Hardy's} theorem on
semisimple {Lie} groups},
journal = {Colloquium Mathematicum},
pages = {27--40},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2002},
doi = {10.4064/cm93-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-4/}
}
Rudra P. Sarkar. A complete analogue of Hardy's theorem on semisimple Lie groups. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 27-40. doi: 10.4064/cm93-1-4
Cité par Sources :