A complete analogue of Hardy's theorem on semisimple Lie groups
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A result by G. H. Hardy ([11]) says that if $f$ and its Fourier transform $\widehat {f}$ are $O(|x|^m e^{-\alpha x^2})$ and $O(|x|^n e^{-x^2/{(4\alpha )}})$ respectively for some $m,n\ge 0$ and $\alpha >0$, then $f$ and $\widehat {f}$ are $P(x)e^{-\alpha x^2}$ and $P'(x)e^{-x^2/{(4\alpha )}}$ respectively for some polynomials $P$ and $P'$. If in particular $f$ is as above, but $\widehat {f}$ is $o(e^{-x^2/{(4\alpha )}})$, then $f= 0$. In this article we will prove a complete analogue of this result for connected noncompact semisimple Lie groups with finite center. Our proof can be carried over to the real reductive groups of the Harish-Chandra class.
DOI : 10.4064/cm93-1-4
Keywords: result hardy says its fourier transform widehat alpha x alpha respectively alpha widehat alpha x alpha respectively polynomials particular above widehat x alpha article prove complete analogue result connected noncompact semisimple lie groups finite center proof carried real reductive groups harish chandra class

Rudra P. Sarkar 1

1 Stat-Math Unit Indian Statistical Institute 203 B. T. Road Calcutta 700108, India
@article{10_4064_cm93_1_4,
     author = {Rudra P. Sarkar},
     title = {A complete analogue of {Hardy's} theorem on
 semisimple {Lie} groups},
     journal = {Colloquium Mathematicum},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2002},
     doi = {10.4064/cm93-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-4/}
}
TY  - JOUR
AU  - Rudra P. Sarkar
TI  - A complete analogue of Hardy's theorem on
 semisimple Lie groups
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 27
EP  - 40
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-4/
DO  - 10.4064/cm93-1-4
LA  - en
ID  - 10_4064_cm93_1_4
ER  - 
%0 Journal Article
%A Rudra P. Sarkar
%T A complete analogue of Hardy's theorem on
 semisimple Lie groups
%J Colloquium Mathematicum
%D 2002
%P 27-40
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-4/
%R 10.4064/cm93-1-4
%G en
%F 10_4064_cm93_1_4
Rudra P. Sarkar. A complete analogue of Hardy's theorem on
 semisimple Lie groups. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 27-40. doi : 10.4064/cm93-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-4/

Cité par Sources :