Inertial subrings of a locally finite algebra
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

I. S. Cohen proved that any commutative local noetherian ring $R$ that is $J(R)$-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra $A$ over a commutative ring $K$. In case $K$ is a Hensel ring and the module $A_{K}$ is finitely generated, under some additional conditions, as proved by Azumaya, $A$ admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed.
DOI : 10.4064/cm92-1-3
Keywords: cohen proved commutative local noetherian ring adic complete admits coefficient subring analogous concept coefficient subring concept inertial subring algebra commutative ring hensel ring module finitely generated under additional conditions proved azumaya admits inertial subring paper question existence inertial subring locally finite algebra discussed

Yousef Alkhamees 1 ; Surjeet Singh 1

1 Department of Mathematics King Saud University PO Box 2455, Riyadh 11451 Kingdom of Saudi Arabia
@article{10_4064_cm92_1_3,
     author = {Yousef Alkhamees and Surjeet Singh},
     title = {Inertial subrings of a locally finite algebra},
     journal = {Colloquium Mathematicum},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2002},
     doi = {10.4064/cm92-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-3/}
}
TY  - JOUR
AU  - Yousef Alkhamees
AU  - Surjeet Singh
TI  - Inertial subrings of a locally finite algebra
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 35
EP  - 43
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-3/
DO  - 10.4064/cm92-1-3
LA  - en
ID  - 10_4064_cm92_1_3
ER  - 
%0 Journal Article
%A Yousef Alkhamees
%A Surjeet Singh
%T Inertial subrings of a locally finite algebra
%J Colloquium Mathematicum
%D 2002
%P 35-43
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-3/
%R 10.4064/cm92-1-3
%G en
%F 10_4064_cm92_1_3
Yousef Alkhamees; Surjeet Singh. Inertial subrings of a locally finite algebra. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 35-43. doi : 10.4064/cm92-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-3/

Cité par Sources :