Orlicz boundedness for certain classical operators
Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 263-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\phi $ and $\psi $ be functions defined on $[ 0,\infty ) $ taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator
$M_{{\mit \Omega }}^{\alpha }$, associated to an open bounded set ${\mit \Omega } $, to be bounded from the
Orlicz space $L^{\psi }({\mit \Omega } )$ into $L^{\phi }({\mit \Omega })$,
$0\leq \alpha n$. For functions $\phi $ of finite upper type these results can be extended to the Hilbert transform
$\widetilde {f}$ on the one-dimensional torus and to the fractional integral operator $I_{{\mit \Omega } }^{\alpha }$, $0\alpha n$. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities.
Keywords:
phi psi functions defined infty taking value zero zero non negative continuous derivative under mild extra assumptions necessary sufficient conditions fractional maximal operator mit omega alpha associated bounded set mit omega bounded orlicz space psi mit omega phi mit omega leq alpha functions phi finite upper type these results extended hilbert transform widetilde one dimensional torus fractional integral operator mit omega alpha alpha since these operators linear self adjoint get duality boundedness results near infinity deriving generalized trudinger type inequalities
Affiliations des auteurs :
E. Harboure 1 ; O. Salinas 1 ; B. Viviani 1
@article{10_4064_cm91_2_6,
author = {E. Harboure and O. Salinas and B. Viviani},
title = {Orlicz boundedness for certain classical operators},
journal = {Colloquium Mathematicum},
pages = {263--282},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2002},
doi = {10.4064/cm91-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-6/}
}
TY - JOUR AU - E. Harboure AU - O. Salinas AU - B. Viviani TI - Orlicz boundedness for certain classical operators JO - Colloquium Mathematicum PY - 2002 SP - 263 EP - 282 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-6/ DO - 10.4064/cm91-2-6 LA - en ID - 10_4064_cm91_2_6 ER -
E. Harboure; O. Salinas; B. Viviani. Orlicz boundedness for certain classical operators. Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 263-282. doi: 10.4064/cm91-2-6
Cité par Sources :