Rank $\alpha $ operators on the space $C(T,X)$
Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 255-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $0\leq \alpha 1$, an operator $U\in L(X,Y)$ is called a rank $\alpha $ operator if
$x_{n}\mathrel {\mathop { \rightarrow }\limits ^{\tau _{\alpha }}}x$ implies $Ux_{n}\rightarrow Ux$ in norm. We give some results on rank $\alpha $ operators, including an interpolation result and a characterization of rank $\alpha $ operators ${U:C(T,X)\rightarrow Y}$ in terms of their representing measures.
Keywords:
leq alpha operator called rank alpha operator mathrel mathop rightarrow limits tau alpha implies rightarrow norm results rank alpha operators including interpolation result characterization rank alpha operators x rightarrow terms their representing measures
Affiliations des auteurs :
Dumitru Popa 1
@article{10_4064_cm91_2_5,
author = {Dumitru Popa},
title = {Rank $\alpha $ operators on the space $C(T,X)$},
journal = {Colloquium Mathematicum},
pages = {255--262},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2002},
doi = {10.4064/cm91-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-5/}
}
Dumitru Popa. Rank $\alpha $ operators on the space $C(T,X)$. Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 255-262. doi: 10.4064/cm91-2-5
Cité par Sources :