Rank $\alpha $ operators on the space $C(T,X)$
Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 255-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $0\leq \alpha 1$, an operator $U\in L(X,Y)$ is called a rank $\alpha $ operator if $x_{n}\mathrel {\mathop { \rightarrow }\limits ^{\tau _{\alpha }}}x$ implies $Ux_{n}\rightarrow Ux$ in norm. We give some results on rank $\alpha $ operators, including an interpolation result and a characterization of rank $\alpha $ operators ${U:C(T,X)\rightarrow Y}$ in terms of their representing measures.
DOI : 10.4064/cm91-2-5
Keywords: leq alpha operator called rank alpha operator mathrel mathop rightarrow limits tau alpha implies rightarrow norm results rank alpha operators including interpolation result characterization rank alpha operators x rightarrow terms their representing measures

Dumitru Popa 1

1 Department of Mathematics University of Constanţa 8700 Constanţa, Romania
@article{10_4064_cm91_2_5,
     author = {Dumitru Popa},
     title = {Rank $\alpha $ operators on the space $C(T,X)$},
     journal = {Colloquium Mathematicum},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {2002},
     doi = {10.4064/cm91-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-5/}
}
TY  - JOUR
AU  - Dumitru Popa
TI  - Rank $\alpha $ operators on the space $C(T,X)$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 255
EP  - 262
VL  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-5/
DO  - 10.4064/cm91-2-5
LA  - en
ID  - 10_4064_cm91_2_5
ER  - 
%0 Journal Article
%A Dumitru Popa
%T Rank $\alpha $ operators on the space $C(T,X)$
%J Colloquium Mathematicum
%D 2002
%P 255-262
%V 91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-5/
%R 10.4064/cm91-2-5
%G en
%F 10_4064_cm91_2_5
Dumitru Popa. Rank $\alpha $ operators on the space $C(T,X)$. Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 255-262. doi : 10.4064/cm91-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-5/

Cité par Sources :