The norm of the polynomial truncation operator on the unit disk and on $[-1,1]$
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 287-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D$ and $\partial D$ denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ${\cal P}_n$ (resp. ${\cal P}_n^{\rm c}$) the set of all polynomials of degree at most~$n$ with real (resp. complex) coefficients. We define the truncation operators $S_n$ for polynomials $P_n \in {\cal P}_n^{\rm c}$ of the form $P_n(z) := \sum_{j=0}^n a_jz^j$, $a_j \in {\Bbb C}$, by $$ S_n(P_n)(z) := \sum_{j=0}^n \widetilde{a}_jz^j, \quad\ \widetilde{a}_j := {a_j\over |a_j|}\min\{|a_j|,1\} $$ (here $0/0$ is interpreted as $1$). We define the norms of the truncation operators by $$\eqalign{ \|S_n\|_{\infty, \partial D}^{\rm real} :={} \sup_{P_n \in {\cal P}_n} {\frac{\max_{z \in \partial D}{|S_n(P_n)(z)|}} {\max_{z \in \partial D}{|P_n(z)|}}},\cr \|S_n\|_{\infty, \partial D}^{\rm comp} :={} \sup_{P_n \in {\cal P}_n^{\rm c}} {\frac{\max_{z \in \partial D}{|S_n(P_n)(z)|}} {\max_{z \in \partial D}{|P_n(z)|}}}.\cr} $$ Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant $c_1 > 0$ such that $$ c_1 \sqrt {2n + 1} \leq \|S_n\|_{\infty, \partial D}^{\rm real} \leq \|S_n\|_{\infty, \partial D}^{\rm comp} \leq \sqrt {2n+1}. $$ This settles a question asked by S.~Kwapie/n. Moreover, an analogous result in $L_p(\partial D)$ for $p \in [2,\infty]$ is established and the case when the unit circle $\partial D$ is replaced by the interval $[-1,1]$ is studied.
DOI : 10.4064/cm90-2-8
Keywords: partial denote unit disk unit circle complex plane respectively denote cal resp cal set polynomials degree real resp complex coefficients define truncation operators polynomials cal form sum bbb n sum widetilde quad widetilde min here interpreted define norms truncation operators eqalign infty partial real sup cal frac max partial n max partial infty partial comp sup cal frac max partial n max partial main theorem establishes right order magnitude above norms there absolute constant sqrt leq infty partial real leq infty partial comp leq sqrt settles question asked kwapie moreover analogous result partial infty established unit circle partial replaced interval studied

Tamás Erdélyi 1

1 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_cm90_2_8,
     author = {Tam\'as Erd\'elyi},
     title = {The norm of the polynomial truncation operator
on the unit disk and on $[-1,1]$},
     journal = {Colloquium Mathematicum},
     pages = {287--293},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2001},
     doi = {10.4064/cm90-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-8/}
}
TY  - JOUR
AU  - Tamás Erdélyi
TI  - The norm of the polynomial truncation operator
on the unit disk and on $[-1,1]$
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 287
EP  - 293
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-8/
DO  - 10.4064/cm90-2-8
LA  - en
ID  - 10_4064_cm90_2_8
ER  - 
%0 Journal Article
%A Tamás Erdélyi
%T The norm of the polynomial truncation operator
on the unit disk and on $[-1,1]$
%J Colloquium Mathematicum
%D 2001
%P 287-293
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-8/
%R 10.4064/cm90-2-8
%G en
%F 10_4064_cm90_2_8
Tamás Erdélyi. The norm of the polynomial truncation operator
on the unit disk and on $[-1,1]$. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 287-293. doi : 10.4064/cm90-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-8/

Cité par Sources :