Generalized Hardy spaces on tube domains over cones
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 213-251.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a class of spaces $H^p_\mu$, $0 p \infty$, of holomorphic functions on the tube, with a norm of Hardy type: $$\|F\|^p_{H^p_\mu}= \sup_{y\in{\mit\Omega}}\int_{{\overline{{\mit\Omega}}}}\int_{{\mathbb R}^n} |F(x+i(y+t))|^p\,dx\,d\mu(t). $$ We allow $\mu$ to be any quasi-invariant measure with respect to a group acting simply transitively on the cone. We show the existence of boundary limits for functions in $H^p_\mu$, and when $p\geq1$, characterize the boundary values as the functions in $L^p_\mu$ satisfying the tangential CR equations. A careful description of the measures $\mu$ when their supports lie on the boundary of the cone is also provided.
DOI : 10.4064/cm90-2-4
Keywords: define class spaces infty holomorphic functions tube norm hardy type sup mit omega int overline mit omega int mathbb y allow quasi invariant measure respect group acting simply transitively cone existence boundary limits functions geq characterize boundary values functions satisfying tangential equations careful description measures their supports lie boundary cone provided

Gustavo Garrigos 1

1 Université d'Orléans MAPMO–BP 6759 45067 Orléans Cedex 2, France and Facultad de Ciencias C-XV Universidad Autónoma de Madrid 28049 Madrid, Spain
@article{10_4064_cm90_2_4,
     author = {Gustavo Garrigos},
     title = {Generalized {Hardy} spaces on tube domains over cones},
     journal = {Colloquium Mathematicum},
     pages = {213--251},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2001},
     doi = {10.4064/cm90-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-4/}
}
TY  - JOUR
AU  - Gustavo Garrigos
TI  - Generalized Hardy spaces on tube domains over cones
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 213
EP  - 251
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-4/
DO  - 10.4064/cm90-2-4
LA  - en
ID  - 10_4064_cm90_2_4
ER  - 
%0 Journal Article
%A Gustavo Garrigos
%T Generalized Hardy spaces on tube domains over cones
%J Colloquium Mathematicum
%D 2001
%P 213-251
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-4/
%R 10.4064/cm90-2-4
%G en
%F 10_4064_cm90_2_4
Gustavo Garrigos. Generalized Hardy spaces on tube domains over cones. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 213-251. doi : 10.4064/cm90-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-4/

Cité par Sources :