Generalized Hardy spaces on tube domains over cones
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 213-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define a class of spaces $H^p_\mu$, $0 p \infty$,
of holomorphic functions on the tube,
with a norm of Hardy type:
$$\|F\|^p_{H^p_\mu}=
\sup_{y\in{\mit\Omega}}\int_{{\overline{{\mit\Omega}}}}\int_{{\mathbb R}^n}
|F(x+i(y+t))|^p\,dx\,d\mu(t).
$$
We allow $\mu$ to be any quasi-invariant measure with respect to a group
acting simply transitively on the cone.
We show the existence of boundary limits for functions in $H^p_\mu$,
and when $p\geq1$, characterize the boundary values as the functions
in $L^p_\mu$ satisfying the tangential CR equations.
A careful description of the measures $\mu$ when their supports lie
on the boundary of the cone is also provided.
Keywords:
define class spaces infty holomorphic functions tube norm hardy type sup mit omega int overline mit omega int mathbb y allow quasi invariant measure respect group acting simply transitively cone existence boundary limits functions geq characterize boundary values functions satisfying tangential equations careful description measures their supports lie boundary cone provided
Affiliations des auteurs :
Gustavo Garrigos 1
@article{10_4064_cm90_2_4,
author = {Gustavo Garrigos},
title = {Generalized {Hardy} spaces on tube domains over cones},
journal = {Colloquium Mathematicum},
pages = {213--251},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2001},
doi = {10.4064/cm90-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-4/}
}
Gustavo Garrigos. Generalized Hardy spaces on tube domains over cones. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 213-251. doi: 10.4064/cm90-2-4
Cité par Sources :