On the set representation of an orthomodular poset
Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 233-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ be an orthomodular poset and let $B$ be a Boolean subalgebra of $P$. A mapping $s:P \to \langle 0, 1 \rangle $ is said to be a centrally additive $B$-state if it is order preserving, satisfies $s(a')=1-s(a)$, is additive on couples that contain a central element, and restricts to a state on $B$. It is shown that, for any Boolean subalgebra $B$ of $P$, $P$ has an abundance of two-valued centrally additive $B$-states. This answers positively a question raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat better set representation of orthomodular posets and a better extension theorem than in [2, 12, 13]. Further improvement in the Boolean vein is hardly possible as the concluding example shows.
DOI : 10.4064/cm89-2-8
Keywords: orthomodular poset boolean subalgebra mapping langle rangle said centrally additive b state order preserving satisfies s additive couples contain central element restricts state shown boolean subalgebra has abundance two valued centrally additive b states answers positively question raised question consequence obtains somewhat better set representation orthomodular posets better extension theorem further improvement boolean vein hardly possible concluding example shows

John Harding 1 ; Pavel Pták 2

1 Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003, U.S.A.
2 Department of Mathematics Faculty of Electrical Engineering Czech Technical University Technická 2 16627 Praha 6, Czech Republic
@article{10_4064_cm89_2_8,
     author = {John Harding and Pavel Pt\'ak},
     title = {On the set representation of an orthomodular poset},
     journal = {Colloquium Mathematicum},
     pages = {233--240},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2001},
     doi = {10.4064/cm89-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-8/}
}
TY  - JOUR
AU  - John Harding
AU  - Pavel Pták
TI  - On the set representation of an orthomodular poset
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 233
EP  - 240
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-8/
DO  - 10.4064/cm89-2-8
LA  - en
ID  - 10_4064_cm89_2_8
ER  - 
%0 Journal Article
%A John Harding
%A Pavel Pták
%T On the set representation of an orthomodular poset
%J Colloquium Mathematicum
%D 2001
%P 233-240
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-8/
%R 10.4064/cm89-2-8
%G en
%F 10_4064_cm89_2_8
John Harding; Pavel Pták. On the set representation of an orthomodular poset. Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 233-240. doi : 10.4064/cm89-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-8/

Cité par Sources :