Some orthogonal decompositions of
Sobolev spaces and applications
Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 199-212
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two kinds of orthogonal decompositions of the Sobolev space
$\mathring W{}_2^1$ and hence also
of $W^{-1}_{2}$ for bounded domains are given. They originate
from a decomposition of $\mathring W{}_2^1$ into the orthogonal sum of the subspace of the
${\mit \Delta }^{k}$-solenoidal functions, $k \ge 1$, and
its explicitly given orthogonal complement. This
decomposition is developed in the real as well as in the complex
case. For the solenoidal subspace $(k=0)$ the decomposition
appears in a little different form. In the second kind
decomposition the ${\mit \Delta }^{k}$-solenoidal function
spaces are decomposed via subspaces of polyharmonic potentials.
These decompositions can be used to solve boundary value
problems of Stokes type and the Stokes problem itself in a new
manner. Another kind of decomposition is given for the Sobolev
spaces $W^{m}_{p}$. They are decomposed into the direct sum of a
harmonic subspace and its direct complement which turns out to
be ${\mit \Delta }(W^{m+2}_{p}\cap \mathring W{}_p^2)$.
The functions involved are all
vector-valued.
Keywords:
kinds orthogonal decompositions sobolev space mathring hence bounded domains given originate decomposition mathring orthogonal sum subspace mit delta solenoidal functions its explicitly given orthogonal complement decomposition developed real complex solenoidal subspace decomposition appears little different form second kind decomposition mit delta solenoidal function spaces decomposed via subspaces polyharmonic potentials these decompositions solve boundary value problems stokes type stokes problem itself manner another kind decomposition given sobolev spaces decomposed direct sum harmonic subspace its direct complement which turns out mit delta cap mathring functions involved vector valued
Affiliations des auteurs :
H. Begehr 1 ; Yu. Dubinskiĭ 2
@article{10_4064_cm89_2_5,
author = {H. Begehr and Yu. Dubinski\u{i}},
title = {Some orthogonal decompositions {of
Sobolev} spaces and applications},
journal = {Colloquium Mathematicum},
pages = {199--212},
publisher = {mathdoc},
volume = {89},
number = {2},
year = {2001},
doi = {10.4064/cm89-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-5/}
}
TY - JOUR AU - H. Begehr AU - Yu. Dubinskiĭ TI - Some orthogonal decompositions of Sobolev spaces and applications JO - Colloquium Mathematicum PY - 2001 SP - 199 EP - 212 VL - 89 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-5/ DO - 10.4064/cm89-2-5 LA - en ID - 10_4064_cm89_2_5 ER -
H. Begehr; Yu. Dubinskiĭ. Some orthogonal decompositions of Sobolev spaces and applications. Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 199-212. doi: 10.4064/cm89-2-5
Cité par Sources :