Sur la somme des quotients partiels
du développement en fraction continue
Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 159-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $[0;a_{1}(x),a_{2}(x),\ldots ]$ be the regular
continued fraction expansion of an irrational $x\in[ 0,1]$. We
prove mainly that, for $\alpha >0$, $\beta \geq 0$ and for almost all $x\in [0,1]$,
$$
\lim _{n\to \infty }\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log
n}=
\cases{
{\alpha }/\!\log 2{\rm if}\ \alpha 1\ {\rm and}\ \beta \geq 0,\cr
{1}/\!\log 2{\rm if}\ \alpha =1\ {\rm and}\ \beta1,\cr}
$$
and, if $\alpha >1$ or $\alpha =1\ {\rm and }\ \beta >1$,
$$\eqalign{
\liminf _{n\to \infty }\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log
n}=\frac{1}{\log 2},\cr
\limsup _{n\to \infty}\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log n}
=\infty,\cr}$$
where $a_{i}^{n}(x)=a_{i}(x)$ if $a_{i}(x)\leq n^{\alpha }\log ^{\beta }n$ and
$a_{i}^{n}(x)=0$ otherwise,
for all $i\in \{ 1,\ldots ,n\}$.
Mots-clés :
ldots regular continued fraction expansion irrational prove mainly alpha beta geq almost lim infty frac ldots log cases alpha log alpha beta geq log alpha beta alpha alpha beta eqalign liminf infty frac ldots log frac log limsup infty frac ldots log infty where leq alpha log beta otherwise ldots
Affiliations des auteurs :
D. Barbolosi 1 ; C. Faivre 2
@article{10_4064_cm89_2_1,
author = {D. Barbolosi and C. Faivre},
title = {Sur la somme des quotients partiels
du d\'eveloppement en fraction continue},
journal = {Colloquium Mathematicum},
pages = {159--167},
publisher = {mathdoc},
volume = {89},
number = {2},
year = {2001},
doi = {10.4064/cm89-2-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-1/}
}
TY - JOUR AU - D. Barbolosi AU - C. Faivre TI - Sur la somme des quotients partiels du développement en fraction continue JO - Colloquium Mathematicum PY - 2001 SP - 159 EP - 167 VL - 89 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm89-2-1/ DO - 10.4064/cm89-2-1 LA - fr ID - 10_4064_cm89_2_1 ER -
D. Barbolosi; C. Faivre. Sur la somme des quotients partiels du développement en fraction continue. Colloquium Mathematicum, Tome 89 (2001) no. 2, pp. 159-167. doi: 10.4064/cm89-2-1
Cité par Sources :