On the complexity of Hamel bases
of infinite-dimensional Banach spaces
Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 133-134
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We call a subset $S$ of a topological vector space $V$
linearly Borel if for every finite number $n$,
the set of all linear combinations of $S$ of length $n$ is a
Borel subset of $V$. It is shown that a Hamel basis of an
infinite-dimensional Banach space can never be linearly Borel.
This answers a question of Anatoliĭ Plichko.
Keywords:
call subset topological vector space linearly borel every finite number set linear combinations length borel subset shown hamel basis infinite dimensional banach space never linearly borel answers question anatoli plichko
Affiliations des auteurs :
Lorenz Halbeisen 1
@article{10_4064_cm89_1_9,
author = {Lorenz Halbeisen},
title = {On the complexity of {Hamel} bases
of infinite-dimensional {Banach} spaces},
journal = {Colloquium Mathematicum},
pages = {133--134},
year = {2001},
volume = {89},
number = {1},
doi = {10.4064/cm89-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-9/}
}
Lorenz Halbeisen. On the complexity of Hamel bases of infinite-dimensional Banach spaces. Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 133-134. doi: 10.4064/cm89-1-9
Cité par Sources :