On the complexity of Hamel bases of infinite-dimensional Banach spaces
Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 133-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We call a subset $S$ of a topological vector space $V$ linearly Borel if for every finite number $n$, the set of all linear combinations of $S$ of length $n$ is a Borel subset of $V$. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.
DOI : 10.4064/cm89-1-9
Keywords: call subset topological vector space linearly borel every finite number set linear combinations length borel subset shown hamel basis infinite dimensional banach space never linearly borel answers question anatoli plichko

Lorenz Halbeisen 1

1 Department of Pure Mathematics Queen's University Belfast Belfast BT7 1NN, Northern Ireland
@article{10_4064_cm89_1_9,
     author = {Lorenz Halbeisen},
     title = {On the complexity of {Hamel} bases
of infinite-dimensional {Banach} spaces},
     journal = {Colloquium Mathematicum},
     pages = {133--134},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2001},
     doi = {10.4064/cm89-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-9/}
}
TY  - JOUR
AU  - Lorenz Halbeisen
TI  - On the complexity of Hamel bases
of infinite-dimensional Banach spaces
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 133
EP  - 134
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-9/
DO  - 10.4064/cm89-1-9
LA  - en
ID  - 10_4064_cm89_1_9
ER  - 
%0 Journal Article
%A Lorenz Halbeisen
%T On the complexity of Hamel bases
of infinite-dimensional Banach spaces
%J Colloquium Mathematicum
%D 2001
%P 133-134
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-9/
%R 10.4064/cm89-1-9
%G en
%F 10_4064_cm89_1_9
Lorenz Halbeisen. On the complexity of Hamel bases
of infinite-dimensional Banach spaces. Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 133-134. doi : 10.4064/cm89-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-9/

Cité par Sources :