Differentiation and splitting
for lattices over orders
Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 7-42
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We extend our module-theoretic approach to
Zavadskiĭ's differentiation
techniques in representation theory. Let $R$ be a complete discrete valuation
domain with quotient field $K$, and ${\mit\Lambda}$ an $R$-order in a
finite-dimensional $K$-algebra. For a hereditary monomorphism $u: P\hookrightarrow I$ of
${\mit\Lambda}$-lattices we have an equivalence of quotient categories
$\widetilde{\partial}_u:{\mit\Lambda}\hbox{-}{\bf lat}/[{\cal H}]\buildrel\sim\over\to
\delta_u{\mit\Lambda}\hbox{-}{\bf lat}/[B]$
which generalizes Zavadskiĭ's algorithms for posets and tiled
orders, and Simson's reduction algorithm for vector space categories. In this
article we replace $u$ by a more general type of monomorphism, and the
derived order $\delta_u{\mit\Lambda}$ by some over-order
$\partial_u{\mit\Lambda}\supset\delta_u{\mit\Lambda}$. Then $\widetilde{\partial}_u$ remains an
equivalence if $\delta_u{\mit\Lambda}\hbox{-}{\bf lat}$ is replaced by a certain subcategory of
${\partial}_u{\mit\Lambda}\hbox{-}{\bf lat}$. The extended differentiation comprises a
splitting theorem that implies Simson's splitting theorem for vector
space categories.
Keywords:
extend module theoretic approach zavadski differentiation techniques representation theory complete discrete valuation domain quotient field mit lambda r order finite dimensional k algebra hereditary monomorphism hookrightarrow mit lambda lattices have equivalence quotient categories widetilde partial mit lambda hbox lat cal buildrel sim delta mit lambda hbox lat which generalizes zavadski algorithms posets tiled orders simsons reduction algorithm vector space categories article replace general type monomorphism derived order delta mit lambda over order partial mit lambda supset delta mit lambda widetilde partial remains equivalence delta mit lambda hbox lat replaced certain subcategory partial mit lambda hbox lat extended differentiation comprises splitting theorem implies simsons splitting theorem vector space categories
Affiliations des auteurs :
Wolfgang Rump 1
@article{10_4064_cm89_1_2,
author = {Wolfgang Rump},
title = {Differentiation and splitting
for lattices over orders},
journal = {Colloquium Mathematicum},
pages = {7--42},
year = {2001},
volume = {89},
number = {1},
doi = {10.4064/cm89-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-2/}
}
Wolfgang Rump. Differentiation and splitting for lattices over orders. Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 7-42. doi: 10.4064/cm89-1-2
Cité par Sources :