Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 121-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain upper and lower estimates for the Green function for a second order noncoercive differential operator on a homogeneous manifold of negative curvature.
DOI : 10.4064/cm88-1-9
Keywords: obtain upper lower estimates green function second order noncoercive differential operator homogeneous manifold negative curvature

Roman Urban 1

1 Institute of Mathematics University of Wroc/law Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_cm88_1_9,
     author = {Roman Urban},
     title = {Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their {Green} functions},
     journal = {Colloquium Mathematicum},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2001},
     doi = {10.4064/cm88-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/}
}
TY  - JOUR
AU  - Roman Urban
TI  - Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their Green functions
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 121
EP  - 134
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/
DO  - 10.4064/cm88-1-9
LA  - en
ID  - 10_4064_cm88_1_9
ER  - 
%0 Journal Article
%A Roman Urban
%T Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their Green functions
%J Colloquium Mathematicum
%D 2001
%P 121-134
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/
%R 10.4064/cm88-1-9
%G en
%F 10_4064_cm88_1_9
Roman Urban. Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their Green functions. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 121-134. doi : 10.4064/cm88-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/

Cité par Sources :