Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their Green functions
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 121-134
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We obtain upper and lower estimates for the Green function
for a second order noncoercive differential operator on a
homogeneous manifold of negative curvature.
Keywords:
obtain upper lower estimates green function second order noncoercive differential operator homogeneous manifold negative curvature
Affiliations des auteurs :
Roman Urban 1
@article{10_4064_cm88_1_9,
author = {Roman Urban},
title = {Noncoercive differential operators
on homogeneous manifolds of negative curvature
and their {Green} functions},
journal = {Colloquium Mathematicum},
pages = {121--134},
year = {2001},
volume = {88},
number = {1},
doi = {10.4064/cm88-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/}
}
TY - JOUR AU - Roman Urban TI - Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions JO - Colloquium Mathematicum PY - 2001 SP - 121 EP - 134 VL - 88 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/ DO - 10.4064/cm88-1-9 LA - en ID - 10_4064_cm88_1_9 ER -
%0 Journal Article %A Roman Urban %T Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions %J Colloquium Mathematicum %D 2001 %P 121-134 %V 88 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/ %R 10.4064/cm88-1-9 %G en %F 10_4064_cm88_1_9
Roman Urban. Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 121-134. doi: 10.4064/cm88-1-9
Cité par Sources :