Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Roman Urban 1
@article{10_4064_cm88_1_9, author = {Roman Urban}, title = {Noncoercive differential operators on homogeneous manifolds of negative curvature and their {Green} functions}, journal = {Colloquium Mathematicum}, pages = {121--134}, publisher = {mathdoc}, volume = {88}, number = {1}, year = {2001}, doi = {10.4064/cm88-1-9}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/} }
TY - JOUR AU - Roman Urban TI - Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions JO - Colloquium Mathematicum PY - 2001 SP - 121 EP - 134 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/ DO - 10.4064/cm88-1-9 LA - en ID - 10_4064_cm88_1_9 ER -
%0 Journal Article %A Roman Urban %T Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions %J Colloquium Mathematicum %D 2001 %P 121-134 %V 88 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/ %R 10.4064/cm88-1-9 %G en %F 10_4064_cm88_1_9
Roman Urban. Noncoercive differential operators on homogeneous manifolds of negative curvature and their Green functions. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 121-134. doi : 10.4064/cm88-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-9/
Cité par Sources :