Existence and integral representation of
regular extensions of measures
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 235-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\cal L}$ be a $\delta $-lattice in a set $X$, and let
$\nu $ be a measure on a sub-$\sigma $-algebra of $\sigma ({\cal
L})$. It is shown that $\nu $ extends to an ${\cal
L}$-regular measure on $\sigma ({\cal L})$ provided $\nu
^{\ast }| {\cal L}$ is $\sigma $-smooth at
$\emptyset $ and $\nu ^{\ast }(L)=\mathop {\rm
inf}\{ \nu ^{\ast }(U)\mid X\setminus U\in
{\cal L},\ U\supset L\} $ for all $L\in
{\cal L}$. Moreover, a Choquet type representation theorem
is proved for the set of all such extensions.
Keywords:
cal delta lattice set measure sub sigma algebra sigma cal shown extends cal regular measure sigma cal provided ast cal sigma smooth emptyset ast mathop inf ast mid setminus cal supset cal moreover choquet type representation theorem proved set extensions
Affiliations des auteurs :
Werner Rinkewitz 1
@article{10_4064_cm87_2_9,
author = {Werner Rinkewitz},
title = {Existence and integral representation of
regular extensions of measures},
journal = {Colloquium Mathematicum},
pages = {235--243},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2001},
doi = {10.4064/cm87-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/}
}
TY - JOUR AU - Werner Rinkewitz TI - Existence and integral representation of regular extensions of measures JO - Colloquium Mathematicum PY - 2001 SP - 235 EP - 243 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/ DO - 10.4064/cm87-2-9 LA - en ID - 10_4064_cm87_2_9 ER -
Werner Rinkewitz. Existence and integral representation of regular extensions of measures. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 235-243. doi: 10.4064/cm87-2-9
Cité par Sources :