Existence and integral representation of regular extensions of measures
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\cal L}$ be a $\delta $-lattice in a set $X$, and let $\nu $ be a measure on a sub-$\sigma $-algebra of $\sigma ({\cal L})$. It is shown that $\nu $ extends to an ${\cal L}$-regular measure on $\sigma ({\cal L})$ provided $\nu ^{\ast }| {\cal L}$ is $\sigma $-smooth at $\emptyset $ and $\nu ^{\ast }(L)=\mathop {\rm inf}\{ \nu ^{\ast }(U)\mid X\setminus U\in {\cal L},\ U\supset L\} $ for all $L\in {\cal L}$. Moreover, a Choquet type representation theorem is proved for the set of all such extensions.
DOI : 10.4064/cm87-2-9
Keywords: cal delta lattice set measure sub sigma algebra sigma cal shown extends cal regular measure sigma cal provided ast cal sigma smooth emptyset ast mathop inf ast mid setminus cal supset cal moreover choquet type representation theorem proved set extensions

Werner Rinkewitz 1

1 Mathematisches Institut Universität München Theresienstraße 39 D-80333 München, Germany
@article{10_4064_cm87_2_9,
     author = {Werner Rinkewitz},
     title = {Existence and integral representation of
regular extensions of measures},
     journal = {Colloquium Mathematicum},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/}
}
TY  - JOUR
AU  - Werner Rinkewitz
TI  - Existence and integral representation of
regular extensions of measures
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 235
EP  - 243
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/
DO  - 10.4064/cm87-2-9
LA  - en
ID  - 10_4064_cm87_2_9
ER  - 
%0 Journal Article
%A Werner Rinkewitz
%T Existence and integral representation of
regular extensions of measures
%J Colloquium Mathematicum
%D 2001
%P 235-243
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/
%R 10.4064/cm87-2-9
%G en
%F 10_4064_cm87_2_9
Werner Rinkewitz. Existence and integral representation of
regular extensions of measures. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 235-243. doi : 10.4064/cm87-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-9/

Cité par Sources :