On supports of dynamical laminations and biaccessible points in polynomial Julia sets
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 287-295.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We use Beurling estimates and Zdunik's theorem to prove that the support of a lamination of the circle corresponding to a connected polynomial Julia set has zero length, unless $f$ is conjugate to a Chebyshev polynomial. Equivalently, except for the Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero harmonic measure.
DOI : 10.4064/cm87-2-11
Keywords: beurling estimates zduniks theorem prove support lamination circle corresponding connected polynomial julia set has zero length unless conjugate chebyshev polynomial equivalently except chebyshev biaccessible points connected polynomial julia set have zero harmonic measure

Stanislav K. Smirnov 1

1 Department of Mathematics Yale University New Haven, CT 06520, U.S.A. Institute for Advanced Study Princeton, NJ 08540, U.S.A. Current address: Dep. of Mathematics KTH S-10044 Stockholm, Sweden
@article{10_4064_cm87_2_11,
     author = {Stanislav K. Smirnov},
     title = {On supports of dynamical laminations and
biaccessible points in polynomial {Julia} sets},
     journal = {Colloquium Mathematicum},
     pages = {287--295},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/}
}
TY  - JOUR
AU  - Stanislav K. Smirnov
TI  - On supports of dynamical laminations and
biaccessible points in polynomial Julia sets
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 287
EP  - 295
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/
DO  - 10.4064/cm87-2-11
LA  - en
ID  - 10_4064_cm87_2_11
ER  - 
%0 Journal Article
%A Stanislav K. Smirnov
%T On supports of dynamical laminations and
biaccessible points in polynomial Julia sets
%J Colloquium Mathematicum
%D 2001
%P 287-295
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/
%R 10.4064/cm87-2-11
%G en
%F 10_4064_cm87_2_11
Stanislav K. Smirnov. On supports of dynamical laminations and
biaccessible points in polynomial Julia sets. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 287-295. doi : 10.4064/cm87-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/

Cité par Sources :