On supports of dynamical laminations and
biaccessible points in polynomial Julia sets
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 287-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We use Beurling estimates and Zdunik's theorem to prove that
the support of a lamination of the circle corresponding to a
connected polynomial Julia set has zero length, unless $f$ is
conjugate to a Chebyshev polynomial. Equivalently, except for
the Chebyshev case, the biaccessible points in the connected
polynomial Julia set have zero harmonic measure.
Keywords:
beurling estimates zduniks theorem prove support lamination circle corresponding connected polynomial julia set has zero length unless conjugate chebyshev polynomial equivalently except chebyshev biaccessible points connected polynomial julia set have zero harmonic measure
Affiliations des auteurs :
Stanislav K. Smirnov 1
@article{10_4064_cm87_2_11,
author = {Stanislav K. Smirnov},
title = {On supports of dynamical laminations and
biaccessible points in polynomial {Julia} sets},
journal = {Colloquium Mathematicum},
pages = {287--295},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2001},
doi = {10.4064/cm87-2-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/}
}
TY - JOUR AU - Stanislav K. Smirnov TI - On supports of dynamical laminations and biaccessible points in polynomial Julia sets JO - Colloquium Mathematicum PY - 2001 SP - 287 EP - 295 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/ DO - 10.4064/cm87-2-11 LA - en ID - 10_4064_cm87_2_11 ER -
%0 Journal Article %A Stanislav K. Smirnov %T On supports of dynamical laminations and biaccessible points in polynomial Julia sets %J Colloquium Mathematicum %D 2001 %P 287-295 %V 87 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-11/ %R 10.4064/cm87-2-11 %G en %F 10_4064_cm87_2_11
Stanislav K. Smirnov. On supports of dynamical laminations and biaccessible points in polynomial Julia sets. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 287-295. doi: 10.4064/cm87-2-11
Cité par Sources :