The weak Phillips property
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 147-158.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Banach space. If the natural projection $p:X^{***}\rightarrow X^{*}$ is sequentially weak$^{*}$-weak continuous then the space $X$ is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.
DOI : 10.4064/cm87-2-1
Keywords: banach space natural projection *** rightarrow * sequentially weak * weak continuous space said have weak phillips property present several characterizations spaces having property study its relationships other banach space properties especially grothendieck property

Ali Ülger 1

1 Department of Mathematics Koc University Fener Yolu, 89010 Sariyer-Istanbul, Turkey
@article{10_4064_cm87_2_1,
     author = {Ali \"Ulger},
     title = {The weak {Phillips} property},
     journal = {Colloquium Mathematicum},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-1/}
}
TY  - JOUR
AU  - Ali Ülger
TI  - The weak Phillips property
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 147
EP  - 158
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-1/
DO  - 10.4064/cm87-2-1
LA  - en
ID  - 10_4064_cm87_2_1
ER  - 
%0 Journal Article
%A Ali Ülger
%T The weak Phillips property
%J Colloquium Mathematicum
%D 2001
%P 147-158
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-1/
%R 10.4064/cm87-2-1
%G en
%F 10_4064_cm87_2_1
Ali Ülger. The weak Phillips property. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 147-158. doi : 10.4064/cm87-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-1/

Cité par Sources :