Homological aspects of the adjoint cotranspose
Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 293-311.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ and $S$ be rings and $_R\omega_S$ a semidualizing bimodule. We introduce and study the adjoint cotransposes of modules and adjoint $n$-$\omega$-cotorsionfree modules. We show that the Auslander class with respect to $_R\omega_S$ is the intersection of the class of adjoint $\infty$-$\omega$-cotorsionfree modules and the right $\operatorname{Tor}$-orthogonal class of $\omega_S$. As a consequence, the classes of adjoint $\infty$-$\omega$-cotorsionfree modules and of $\infty$-$\omega$-cotorsionfree modules are equivalent under Foxby equivalence if and only if they coincide with the Auslander and Bass classes with respect to $\omega$ respectively. Moreover, we give some equivalent characterizations when the left and right projective dimensions of $_R\omega_S$ are finite in terms of the properties of (adjoint) $\infty$-$\omega$-cotorsionfree modules.
DOI : 10.4064/cm7121-12-2016
Mots-clés : rings omega semidualizing bimodule introduce study adjoint cotransposes modules adjoint n omega cotorsionfree modules auslander class respect omega intersection class adjoint infty omega cotorsionfree modules right operatorname tor orthogonal class omega nbsp consequence classes adjoint infty omega cotorsionfree modules infty omega cotorsionfree modules equivalent under foxby equivalence only coincide auslander bass classes respect omega respectively moreover equivalent characterizations right projective dimensions omega finite terms properties adjoint infty omega cotorsionfree modules

Xi Tang 1 ; Zhaoyong Huang 2

1 College of Science Guilin University of Technology 541004 Guilin, Guangxi, P.R. China
2 Department of Mathematics Nanjing University 210093 Nanjing, Jiangsu, P.R. China
@article{10_4064_cm7121_12_2016,
     author = {Xi Tang and Zhaoyong Huang},
     title = {Homological aspects of the adjoint cotranspose},
     journal = {Colloquium Mathematicum},
     pages = {293--311},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7121-12-2016},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/}
}
TY  - JOUR
AU  - Xi Tang
AU  - Zhaoyong Huang
TI  - Homological aspects of the adjoint cotranspose
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 293
EP  - 311
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/
DO  - 10.4064/cm7121-12-2016
LA  - fr
ID  - 10_4064_cm7121_12_2016
ER  - 
%0 Journal Article
%A Xi Tang
%A Zhaoyong Huang
%T Homological aspects of the adjoint cotranspose
%J Colloquium Mathematicum
%D 2017
%P 293-311
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/
%R 10.4064/cm7121-12-2016
%G fr
%F 10_4064_cm7121_12_2016
Xi Tang; Zhaoyong Huang. Homological aspects of the adjoint cotranspose. Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 293-311. doi : 10.4064/cm7121-12-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/

Cité par Sources :