Homological aspects of the adjoint cotranspose
Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 293-311
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $R$ and $S$ be rings and $_R\omega_S$ a semidualizing bimodule. We introduce and study the adjoint
cotransposes of modules and adjoint $n$-$\omega$-cotorsionfree modules. We show that
the Auslander class with respect to $_R\omega_S$ is the intersection of the class of adjoint
$\infty$-$\omega$-cotorsionfree modules and the right $\operatorname{Tor}$-orthogonal class of $\omega_S$.
As a consequence, the classes of adjoint $\infty$-$\omega$-cotorsionfree
modules and of $\infty$-$\omega$-cotorsionfree modules are equivalent under Foxby equivalence
if and only if they coincide with the Auslander and Bass classes with respect to $\omega$ respectively.
Moreover, we give some equivalent characterizations when the left and right projective dimensions
of $_R\omega_S$ are finite in terms of the properties of (adjoint) $\infty$-$\omega$-cotorsionfree modules.
Mots-clés :
rings omega semidualizing bimodule introduce study adjoint cotransposes modules adjoint n omega cotorsionfree modules auslander class respect omega intersection class adjoint infty omega cotorsionfree modules right operatorname tor orthogonal class omega nbsp consequence classes adjoint infty omega cotorsionfree modules infty omega cotorsionfree modules equivalent under foxby equivalence only coincide auslander bass classes respect omega respectively moreover equivalent characterizations right projective dimensions omega finite terms properties adjoint infty omega cotorsionfree modules
Affiliations des auteurs :
Xi Tang 1 ; Zhaoyong Huang 2
@article{10_4064_cm7121_12_2016,
author = {Xi Tang and Zhaoyong Huang},
title = {Homological aspects of the adjoint cotranspose},
journal = {Colloquium Mathematicum},
pages = {293--311},
year = {2017},
volume = {150},
number = {2},
doi = {10.4064/cm7121-12-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/}
}
TY - JOUR AU - Xi Tang AU - Zhaoyong Huang TI - Homological aspects of the adjoint cotranspose JO - Colloquium Mathematicum PY - 2017 SP - 293 EP - 311 VL - 150 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7121-12-2016/ DO - 10.4064/cm7121-12-2016 LA - fr ID - 10_4064_cm7121_12_2016 ER -
Xi Tang; Zhaoyong Huang. Homological aspects of the adjoint cotranspose. Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 293-311. doi: 10.4064/cm7121-12-2016
Cité par Sources :