Reconstructing topological graphs and continua
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 107-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The deck of a topological space $X$ is the set ${\mathcal D}(X) =\{[X \setminus \{x\}] : x \in X\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever ${\mathcal D}(X) ={\mathcal D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more generally, that all compact graph-like spaces are reconstructible.
Keywords:
deck topological space set mathcal setminus where denotes homeomorphism class space emph topologically reconstructible whenever mathcal mathcal homeomorphic shown metrizable compact connected spaces reconstructible follows finite graphs viewed dimensional cell complex reconstructible topological sense generally compact graph like spaces reconstructible
Affiliations des auteurs :
Paul Gartside 1 ; Max F. Pitz 2 ; Rolf Suabedissen 3
@article{10_4064_cm7011_10_2016,
author = {Paul Gartside and Max F. Pitz and Rolf Suabedissen},
title = {Reconstructing topological graphs and continua},
journal = {Colloquium Mathematicum},
pages = {107--122},
publisher = {mathdoc},
volume = {148},
number = {1},
year = {2017},
doi = {10.4064/cm7011-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/}
}
TY - JOUR AU - Paul Gartside AU - Max F. Pitz AU - Rolf Suabedissen TI - Reconstructing topological graphs and continua JO - Colloquium Mathematicum PY - 2017 SP - 107 EP - 122 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/ DO - 10.4064/cm7011-10-2016 LA - en ID - 10_4064_cm7011_10_2016 ER -
%0 Journal Article %A Paul Gartside %A Max F. Pitz %A Rolf Suabedissen %T Reconstructing topological graphs and continua %J Colloquium Mathematicum %D 2017 %P 107-122 %V 148 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/ %R 10.4064/cm7011-10-2016 %G en %F 10_4064_cm7011_10_2016
Paul Gartside; Max F. Pitz; Rolf Suabedissen. Reconstructing topological graphs and continua. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 107-122. doi: 10.4064/cm7011-10-2016
Cité par Sources :