Reconstructing topological graphs and continua
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 107-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The deck of a topological space $X$ is the set ${\mathcal D}(X) =\{[X \setminus \{x\}] : x \in X\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever ${\mathcal D}(X) ={\mathcal D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more generally, that all compact graph-like spaces are reconstructible.
DOI : 10.4064/cm7011-10-2016
Keywords: deck topological space set mathcal setminus where denotes homeomorphism class space emph topologically reconstructible whenever mathcal mathcal homeomorphic shown metrizable compact connected spaces reconstructible follows finite graphs viewed dimensional cell complex reconstructible topological sense generally compact graph like spaces reconstructible

Paul Gartside 1 ; Max F. Pitz 2 ; Rolf Suabedissen 3

1 The Dietrich School of Arts and Sciences 301 Thackeray Hall Pittsburgh, PA 15260, U.S.A.
2 Department of Mathematics University of Hamburg Bundesstraße 55 (Geomatikum) 20146 Hamburg, Germany
3 Mathematical Institute University of Oxford Oxford OX2 6GG, United Kingdom
@article{10_4064_cm7011_10_2016,
     author = {Paul Gartside and Max F. Pitz and Rolf Suabedissen},
     title = {Reconstructing topological graphs and continua},
     journal = {Colloquium Mathematicum},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2017},
     doi = {10.4064/cm7011-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/}
}
TY  - JOUR
AU  - Paul Gartside
AU  - Max F. Pitz
AU  - Rolf Suabedissen
TI  - Reconstructing topological graphs and continua
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 107
EP  - 122
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/
DO  - 10.4064/cm7011-10-2016
LA  - en
ID  - 10_4064_cm7011_10_2016
ER  - 
%0 Journal Article
%A Paul Gartside
%A Max F. Pitz
%A Rolf Suabedissen
%T Reconstructing topological graphs and continua
%J Colloquium Mathematicum
%D 2017
%P 107-122
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/
%R 10.4064/cm7011-10-2016
%G en
%F 10_4064_cm7011_10_2016
Paul Gartside; Max F. Pitz; Rolf Suabedissen. Reconstructing topological graphs and continua. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 107-122. doi : 10.4064/cm7011-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7011-10-2016/

Cité par Sources :