Some congruences for Schröder type polynomials
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 187-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The $n$th Schröder number is given by
$S_n=\sum_{k=0}^{n}{n\choose k}{n+k\choose k}\frac{1}{k+1}.$
Motivated by these numbers, for any positive integer $\alpha$ we introduce the polynomials
\begin{equation*}
S_n^{(\alpha)}(x)=\sum_{k=0}^{n}\left({n\atop k}\right)^{\alpha}\left({n+k\atop k}\right)^{\alpha}\frac{x^k}{(k+1)^{\alpha}}.
\end{equation*}
We prove that for any positive integers $r$, $\alpha$, odd prime $p$ and any integer $m$ not divisible by $p$, and for $\varepsilon=\pm 1$,
\begin{align*}
\sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha-1)}(m)^r\equiv 0 \pmod{p},\\
\sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha)}(m)^r\equiv -2^r \pmod{p}.
\end{align*}
Keywords:
nth schr der number given sum choose choose frac motivated these numbers positive integer alpha introduce polynomials begin equation* alpha sum atop right alpha atop right alpha frac alpha end equation* prove positive integers alpha odd prime integer divisible varepsilon begin align* sum p varepsilon alpha equiv pmod sum p varepsilon alpha equiv pmod end align*
Affiliations des auteurs :
Ji-Cai Liu 1
@article{10_4064_cm7004_8_2016,
author = {Ji-Cai Liu},
title = {Some congruences for {Schr\"oder} type polynomials},
journal = {Colloquium Mathematicum},
pages = {187--195},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2017},
doi = {10.4064/cm7004-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7004-8-2016/}
}
Ji-Cai Liu. Some congruences for Schröder type polynomials. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 187-195. doi: 10.4064/cm7004-8-2016
Cité par Sources :