Some congruences for Schröder type polynomials
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 187-195.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The $n$th Schröder number is given by $S_n=\sum_{k=0}^{n}{n\choose k}{n+k\choose k}\frac{1}{k+1}.$ Motivated by these numbers, for any positive integer $\alpha$ we introduce the polynomials \begin{equation*} S_n^{(\alpha)}(x)=\sum_{k=0}^{n}\left({n\atop k}\right)^{\alpha}\left({n+k\atop k}\right)^{\alpha}\frac{x^k}{(k+1)^{\alpha}}. \end{equation*} We prove that for any positive integers $r$, $\alpha$, odd prime $p$ and any integer $m$ not divisible by $p$, and for $\varepsilon=\pm 1$, \begin{align*} \sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha-1)}(m)^r\equiv 0 \pmod{p},\\ \sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha)}(m)^r\equiv -2^r \pmod{p}. \end{align*}
DOI : 10.4064/cm7004-8-2016
Keywords: nth schr der number given sum choose choose frac motivated these numbers positive integer alpha introduce polynomials begin equation* alpha sum atop right alpha atop right alpha frac alpha end equation* prove positive integers alpha odd prime integer divisible varepsilon begin align* sum p varepsilon alpha equiv pmod sum p varepsilon alpha equiv pmod end align*

Ji-Cai Liu 1

1 Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University 500 Dongchuan Road Shanghai 200241, People’s Republic of China
@article{10_4064_cm7004_8_2016,
     author = {Ji-Cai Liu},
     title = {Some congruences for {Schr\"oder} type polynomials},
     journal = {Colloquium Mathematicum},
     pages = {187--195},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7004-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7004-8-2016/}
}
TY  - JOUR
AU  - Ji-Cai Liu
TI  - Some congruences for Schröder type polynomials
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 187
EP  - 195
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7004-8-2016/
DO  - 10.4064/cm7004-8-2016
LA  - en
ID  - 10_4064_cm7004_8_2016
ER  - 
%0 Journal Article
%A Ji-Cai Liu
%T Some congruences for Schröder type polynomials
%J Colloquium Mathematicum
%D 2017
%P 187-195
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7004-8-2016/
%R 10.4064/cm7004-8-2016
%G en
%F 10_4064_cm7004_8_2016
Ji-Cai Liu. Some congruences for Schröder type polynomials. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 187-195. doi : 10.4064/cm7004-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7004-8-2016/

Cité par Sources :