Quantum groups from stationary matrix models
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 247-267.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the compact quantum groups appearing via models $C(G)\subset M_K(C(X))$ which are “stationary”, in the sense that the Haar integration over $G$ is the functional $\mathrm {tr}\otimes \int _X$. Our results include a number of generalities, with a substantial list of examples, and a detailed discussion in the quantum permutation group case.
DOI : 10.4064/cm6964-12-2016
Keywords: study compact quantum groups appearing via models subset x which stationary sense haar integration functional mathrm otimes int results include number generalities substantial list examples detailed discussion quantum permutation group

Teodor Banica 1

1 Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise, France
@article{10_4064_cm6964_12_2016,
     author = {Teodor Banica},
     title = {Quantum groups from stationary matrix models},
     journal = {Colloquium Mathematicum},
     pages = {247--267},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6964-12-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6964-12-2016/}
}
TY  - JOUR
AU  - Teodor Banica
TI  - Quantum groups from stationary matrix models
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 247
EP  - 267
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6964-12-2016/
DO  - 10.4064/cm6964-12-2016
LA  - en
ID  - 10_4064_cm6964_12_2016
ER  - 
%0 Journal Article
%A Teodor Banica
%T Quantum groups from stationary matrix models
%J Colloquium Mathematicum
%D 2017
%P 247-267
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6964-12-2016/
%R 10.4064/cm6964-12-2016
%G en
%F 10_4064_cm6964_12_2016
Teodor Banica. Quantum groups from stationary matrix models. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 247-267. doi : 10.4064/cm6964-12-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6964-12-2016/

Cité par Sources :