A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 265-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $a, b, c, m$ be positive integers such that $a+b=c^{2}$, $2\nmid c$, $m \gt 1$ and $m\equiv \pm 1\ ({\rm mod}\,c)$. We prove that if $a\equiv 4$ or $5\ ({\rm mod}\, 8)$, $((a+1)/c)=-1$ and $m \gt 6c^2\log c$, where $((a+1)/c)$ is the Jacobi symbol, then the equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$ only has the positive integer solution $(x, y, z)=(1, 1, 2)$.
DOI : 10.4064/cm6878-10-2016
Keywords: positive integers nmid equiv mod prove equiv mod log where jacobi symbol equation only has positive integer solution

Xiaowei Pan 1

1 Department of Health Management Xi’an Medical University Xi’an, 710021 Shaanxi, China
@article{10_4064_cm6878_10_2016,
     author = {Xiaowei Pan},
     title = {A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$},
     journal = {Colloquium Mathematicum},
     pages = {265--273},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6878-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6878-10-2016/}
}
TY  - JOUR
AU  - Xiaowei Pan
TI  - A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 265
EP  - 273
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6878-10-2016/
DO  - 10.4064/cm6878-10-2016
LA  - en
ID  - 10_4064_cm6878_10_2016
ER  - 
%0 Journal Article
%A Xiaowei Pan
%T A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$
%J Colloquium Mathematicum
%D 2017
%P 265-273
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6878-10-2016/
%R 10.4064/cm6878-10-2016
%G en
%F 10_4064_cm6878_10_2016
Xiaowei Pan. A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 265-273. doi : 10.4064/cm6878-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6878-10-2016/

Cité par Sources :