The optimal constants in Khintchine’s inequality for the case $2 p 3$
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 203-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A main step in Haagerup’s proof for the optimal constants in Khintchine’s inequality is to show integral inequalities of the type $\int (g^s-f^s) \,d \mu \geq 0$. In 2000, F. L. Nazarov and A. N. Podkorytov made Haagerup’s proof much more clear for the case $0 \lt p \lt 2$ by using a lemma on distribution functions. In this article we treat the case $2 \lt p \lt 3$ with their technique.
Keywords:
main step haagerup proof optimal constants khintchine inequality integral inequalities type int s f geq nbsp nbsp nazarov nbsp nbsp podkorytov made haagerup proof much clear using lemma distribution functions article treat their technique
Affiliations des auteurs :
Olaf Mordhorst 1
@article{10_4064_cm6861_7_2016,
author = {Olaf Mordhorst},
title = {The optimal constants in {Khintchine{\textquoteright}s} inequality for the case $2 < p < 3$},
journal = {Colloquium Mathematicum},
pages = {203--216},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2017},
doi = {10.4064/cm6861-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6861-7-2016/}
}
TY - JOUR AU - Olaf Mordhorst TI - The optimal constants in Khintchine’s inequality for the case $2 < p < 3$ JO - Colloquium Mathematicum PY - 2017 SP - 203 EP - 216 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6861-7-2016/ DO - 10.4064/cm6861-7-2016 LA - en ID - 10_4064_cm6861_7_2016 ER -
%0 Journal Article %A Olaf Mordhorst %T The optimal constants in Khintchine’s inequality for the case $2 < p < 3$ %J Colloquium Mathematicum %D 2017 %P 203-216 %V 147 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6861-7-2016/ %R 10.4064/cm6861-7-2016 %G en %F 10_4064_cm6861_7_2016
Olaf Mordhorst. The optimal constants in Khintchine’s inequality for the case $2 < p < 3$. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 203-216. doi: 10.4064/cm6861-7-2016
Cité par Sources :